
Chapter 2

DESCRIPTIVE STATISTICS

2.1 INTRODUCTION
In this chapter we introduce the subject matter of descriptive statistics, and in doing
so learn ways to describe and summarize a set of data. Section 2.2 deals with ways of
describing a data set. Subsections 2.2.1 and 2.2.2 indicate how data that take on only
a relatively few distinct values can be described by using frequency tables or graphs, whereas
Subsection 2.2.3 deals with data whose set of values is grouped into different intervals.
Section 2.3 discusses ways of summarizing data sets by use of statistics, which are numerical
quantities whose values are determined by the data. Subsection 2.3.1 considers three
statistics that are used to indicate the “center” of the data set: the sample mean, the sample
median, and the sample mode. Subsection 2.3.2 introduces the sample variance and its
square root, called the sample standard deviation. These statistics are used to indicate the
spread of the values in the data set. Subsection 2.3.3 deals with sample percentiles, which
are statistics that tell us, for instance, which data value is greater than 95 percent of all
the data. In Section 2.4 we present Chebyshev’s inequality for sample data. This famous
inequality gives a lower bound to the proportion of the data that can differ from the
sample mean by more than k times the sample standard deviation. Whereas Chebyshev’s
inequality holds for all data sets, we can in certain situations, which are discussed in
Section 2.5, obtain more precise estimates of the proportion of the data that is within k
sample standard deviations of the sample mean. In Section 2.5 we note that when a graph
of the data follows a bell-shaped form the data set is said to be approximately normal, and
more precise estimates are given by the so-called empirical rule. Section 2.6 is concerned
with situations in which the data consist of paired values. A graphical technique, called
the scatter diagram, for presenting such data is introduced, as is the sample correlation
coefficient, a statistic that indicates the degree to which a large value of the first member
of the pair tends to go along with a large value of the second.

2.2 DESCRIBING DATA SETS
The numerical findings of a study should be presented clearly, concisely, and in such
a manner that an observer can quickly obtain a feel for the essential characteristics of
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10 Chapter 2: Descriptive Statistics

the data. Over the years it has been found that tables and graphs are particularly useful
ways of presenting data, often revealing important features such as the range, the degree
of concentration, and the symmetry of the data. In this section we present some common
graphical and tabular ways for presenting data.

2.2.1 Frequency Tables and Graphs

A data set having a relatively small number of distinct values can be conveniently presented
in a frequency table. For instance, Table 2.1 is a frequency table for a data set consisting of the
starting yearly salaries (to the nearest thousand dollars) of 42 recently graduated students
with B.S. degrees in electrical engineering. Table 2.1 tells us, among other things, that the
lowest starting salary of $47,000 was received by four of the graduates, whereas the highest
salary of $60,000 was received by a single student. The most common starting salary was
$52,000, and was received by 10 of the students.

TABLE 2.1 Starting Yearly Salaries

Starting Salary Frequency

47 4
48 1
49 3
50 5
51 8
52 10
53 0
54 5
56 2
57 3
60 1

Data from a frequency table can be graphically represented by a line graph that plots the
distinct data values on the horizontal axis and indicates their frequencies by the heights of
vertical lines. A line graph of the data presented in Table 2.1 is shown in Figure 2.1.

When the lines in a line graph are given added thickness, the graph is called a bar graph.
Figure 2.2 presents a bar graph.

Another type of graph used to represent a frequency table is the frequency polygon, which
plots the frequencies of the different data values on the vertical axis, and then connects the
plotted points with straight lines. Figure 2.3 presents a frequency polygon for the data of
Table 2.1.

2.2.2 Relative Frequency Tables and Graphs

Consider a data set consisting of n values. If f is the frequency of a particular value, then
the ratio f /n is called its relative frequency. That is, the relative frequency of a data value is
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FIGURE 2.1 Starting salary data.

12

10

8

6

4

2

0

Fr
eq

ue
nc

y

Starting salary

47 48 49 50 51 52 53 54 56 57 60

FIGURE 2.2 Bar graph for starting salary data.
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FIGURE 2.3 Frequency polygon for starting salary data.

the proportion of the data that have that value. The relative frequencies can be represented
graphically by a relative frequency line or bar graph or by a relative frequency polygon.
Indeed, these relative frequency graphs will look like the corresponding graphs of the
absolute frequencies except that the labels on the vertical axis are now the old labels (that
gave the frequencies) divided by the total number of data points.

EXAMPLE 2.2a Table 2.2 is a relative frequency table for the data of Table 2.1. The rela-
tive frequencies are obtained by dividing the corresponding frequencies of Table 2.1 by
42, the size of the data set. ■

A pie chart is often used to indicate relative frequencies when the data are not numerical
in nature. A circle is constructed and then sliced into different sectors; one for each distinct
type of data value. The relative frequency of a data value is indicated by the area of its sector,
this area being equal to the total area of the circle multiplied by the relative frequency of
the data value.

EXAMPLE 2.2b The following data relate to the different types of cancers affecting the 200
most recent patients to enroll at a clinic specializing in cancer. These data are represented
in the pie chart presented in Figure 2.4. ■
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TABLE 2.2

Starting Salary Frequency

47 4/42 = .0952
48 1/42 = .0238
49 3/42
50 5/42
51 8/42
52 10/42
53 0
54 5/42
56 2/42
57 3/42
60 1/42

Melanoma
4.5%

Bladder
6%

Lung
21%

Breast
25%

Colon
16%

Prostate
27.5%

FIGURE 2.4
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Type of Cancer Number of New Cases Relative Frequency

Lung 42 .21
Breast 50 .25
Colon 32 .16
Prostate 55 .275
Melanoma 9 .045
Bladder 12 .06

2.2.3 Grouped Data, Histograms, Ogives, and

Stem and Leaf Plots

As seen in Subsection 2.2.2, using a line or a bar graph to plot the frequencies of data values
is often an effective way of portraying a data set. However, for some data sets the number
of distinct values is too large to utilize this approach. Instead, in such cases, it is useful to
divide the values into groupings, or class intervals, and then plot the number of data values
falling in each class interval. The number of class intervals chosen should be a trade-off
between (1) choosing too few classes at a cost of losing too much information about the
actual data values in a class and (2) choosing too many classes, which will result in the

TABLE 2.3 Life in Hours of 200 Incandescent Lamps

Item Lifetimes

1,067 919 1,196 785 1,126 936 918 1,156 920 948
855 1,092 1,162 1,170 929 950 905 972 1,035 1,045

1,157 1,195 1,195 1,340 1,122 938 970 1,237 956 1,102
1,022 978 832 1,009 1,157 1,151 1,009 765 958 902

923 1,333 811 1,217 1,085 896 958 1,311 1,037 702

521 933 928 1,153 946 858 1,071 1,069 830 1,063
930 807 954 1,063 1,002 909 1,077 1,021 1,062 1,157
999 932 1,035 944 1,049 940 1,122 1,115 833 1,320
901 1,324 818 1,250 1,203 1,078 890 1,303 1,011 1,102
996 780 900 1,106 704 621 854 1,178 1,138 951

1,187 1,067 1,118 1,037 958 760 1,101 949 992 966
824 653 980 935 878 934 910 1,058 730 980
844 814 1,103 1,000 788 1,143 935 1,069 1,170 1,067

1,037 1,151 863 990 1,035 1,112 931 970 932 904
1,026 1,147 883 867 990 1,258 1,192 922 1,150 1,091

1,039 1,083 1,040 1,289 699 1,083 880 1,029 658 912
1,023 984 856 924 801 1,122 1,292 1,116 880 1,173
1,134 932 938 1,078 1,180 1,106 1,184 954 824 529

998 996 1,133 765 775 1,105 1,081 1,171 705 1,425
610 916 1,001 895 709 860 1,110 1,149 972 1,002
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frequencies of each class being too small for a pattern to be discernible. Although 5 to 10
class intervals are typical, the appropriate number is a subjective choice, and of course, you
can try different numbers of class intervals to see which of the resulting charts appears to
be most revealing about the data. It is common, although not essential, to choose class
intervals of equal length.

The endpoints of a class interval are called the class boundaries. We will adopt the
left-end inclusion convention, which stipulates that a class interval contains its left-end but
not its right-end boundary point. Thus, for instance, the class interval 20–30 contains
all values that are both greater than or equal to 20 and less than 30.

Table 2.3 presents the lifetimes of 200 incandescent lamps. A class frequency table for
the data of Table 2.3 is presented in Table 2.4. The class intervals are of length 100, with
the first one starting at 500.

TABLE 2.4 A Class Frequency Table

Frequency
(Number of Data Values in

Class Interval the Interval)

500–600 2
600–700 5
700–800 12
800–900 25
900–1000 58

1000–1100 41
1100–1200 43
1200–1300 7
1300–1400 6
1400–1500 1

5 6 7 8 9 10 11 12 13 14 15

Life in units of 100 hours

Number of
occurrences

60

50

40
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10

0
0

FIGURE 2.5 A frequency histogram.
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FIGURE 2.6 A cumulative frequency plot.

A bar graph plot of class data, with the bars placed adjacent to each other, is called
a histogram. The vertical axis of a histogram can represent either the class frequency or the
relative class frequency; in the former case the graph is called a frequency histogram and
in the latter a relative frequency histogram. Figure 2.5 presents a frequency histogram of the
data in Table 2.4.

We are sometimes interested in plotting a cumulative frequency (or cumulative relative
frequency) graph. A point on the horizontal axis of such a graph represents a possible
data value; its corresponding vertical plot gives the number (or proportion) of the data
whose values are less than or equal to it. A cumulative relative frequency plot of the data
of Table 2.3 is given in Figure 2.6. We can conclude from this figure that 100 percent
of the data values are less than 1,500, approximately 40 percent are less than or equal to
900, approximately 80 percent are less than or equal to 1,100, and so on. A cumulative
frequency plot is called an ogive.

An efficient way of organizing a small- to moderate-sized data set is to utilize a stem
and leaf plot. Such a plot is obtained by first dividing each data value into two parts —
its stem and its leaf. For instance, if the data are all two-digit numbers, then we could let
the stem part of a data value be its tens digit and let the leaf be its ones digit. Thus, for
instance, the value 62 is expressed as

Stem Leaf
6 2

and the two data values 62 and 67 can be represented as

Stem Leaf
6 2, 7
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EXAMPLE 2.2c Table 2.5 gives the monthly and yearly average daily minimum tempera-
tures in 35 U.S. cities.

The annual average daily minimum temperatures from Table 2.5 are represented in the
following stem and leaf plot.

7 0.0
6 9.0
5 1.0, 1.3, 2.0, 5.5, 7.1, 7.4, 7.6, 8.5, 9.3
4 0.0, 1.0, 2.4, 3.6, 3.7, 4.8, 5.0, 5.2, 6.0, 6.7, 8.1, 9.0, 9.2
3 3.1, 4.1, 5.3, 5.8, 6.2, 9.0, 9.5, 9.5
2 9.0, 9.8

2.3 SUMMARIZING DATA SETS
Modern-day experiments often deal with huge sets of data. For instance, in an attempt
to learn about the health consequences of certain common practices, in 1951 the medical
statisticians R. Doll and A. B. Hill sent questionnaires to all doctors in the United Kingdom
and received approximately 40,000 replies. Their questions dealt with age, eating habits,
and smoking habits. The respondents were then tracked for the ensuing 10 years and the
causes of death for those who died were monitored. To obtain a feel for such a large amount
of data, it is useful to be able to summarize it by some suitably chosen measures. In this
section we present some summarizing statistics, where a statistic is a numerical quantity
whose value is determined by the data.

2.3.1 Sample Mean, Sample Median, and Sample Mode

In this section we introduce some statistics that are used for describing the center of a set
of data values. To begin, suppose that we have a data set consisting of the n numerical
values x1, x2, . . . , xn. The sample mean is the arithmetic average of these values.

Definition
The sample mean, designated by x̄, is defined by

x̄ =
n∑

i=1

xi/n

The computation of the sample mean can often be simplified by noting that if for constants
a and b

yi = axi + b, i = 1, . . . , n
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TABLE 2.5 Normal Daily Minimum Temperature — Selected Cities

[In Fahrenheit degrees. Airport data except as noted. Based on standard 30-year period, 1961 through 1990]

Annual
State Station Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. avg.

AL Mobile . . . . . . . . . . . . . . . 40.0 42.7 50.1 57.1 64.4 70.7 73.2 72.9 68.7 57.3 49.1 43.1 57.4
AK Juneau. . . . . . . . . . . . . . . . 19.0 22.7 26.7 32.1 38.9 45.0 48.1 47.3 42.9 37.2 27.2 22.6 34.1
AZ Phoenix . . . . . . . . . . . . . . 41.2 44.7 48.8 55.3 63.9 72.9 81.0 79.2 72.8 60.8 48.9 41.8 59.3
AR Little Rock . . . . . . . . . . . . 29.1 33.2 42.2 50.7 59.0 67.4 71.5 69.8 63.5 50.9 41.5 33.1 51.0
CA Los Angeles . . . . . . . . . . . 47.8 49.3 50.5 52.8 56.3 59.5 62.8 64.2 63.2 59.2 52.8 47.9 55.5

Sacramento . . . . . . . . . . . 37.7 41.4 43.2 45.5 50.3 55.3 58.1 58.0 55.7 50.4 43.4 37.8 48.1
San Diego . . . . . . . . . . . . 48.9 50.7 52.8 55.6 59.1 61.9 65.7 67.3 65.6 60.9 53.9 48.8 57.6
San Francisco . . . . . . . . . . 41.8 45.0 45.8 47.2 49.7 52.6 53.9 55.0 55.2 51.8 47.1 42.7 49.0

CO Denver . . . . . . . . . . . . . . . 16.1 20.2 25.8 34.5 43.6 52.4 58.6 56.9 47.6 36.4 25.4 17.4 36.2
CT Hartford . . . . . . . . . . . . . . 15.8 18.6 28.1 37.5 47.6 56.9 62.2 60.4 51.8 40.7 32.8 21.3 39.5
DE Wilmington . . . . . . . . . . . 22.4 24.8 33.1 41.8 52.2 61.6 67.1 65.9 58.2 45.7 37.0 27.6 44.8
DC Washington . . . . . . . . . . . 26.8 29.1 37.7 46.4 56.6 66.5 71.4 70.0 62.5 50.3 41.1 31.7 49.2
FL Jacksonville . . . . . . . . . . . 40.5 43.3 49.2 54.9 62.1 69.1 71.9 71.8 69.0 59.3 50.2 43.4 57.1

Miami . . . . . . . . . . . . . . . . 59.2 60.4 64.2 67.8 72.1 75.1 76.2 76.7 75.9 72.1 66.7 61.5 69.0
GA Atlanta . . . . . . . . . . . . . . . 31.5 34.5 42.5 50.2 58.7 66.2 69.5 69.0 63.5 51.9 42.8 35.0 51.3
HI Honolulu . . . . . . . . . . . . . 65.6 65.4 67.2 68.7 70.3 72.2 73.5 74.2 73.5 72.3 70.3 67.0 70.0
ID Boise . . . . . . . . . . . . . . . . . 21.6 27.5 31.9 36.7 43.9 52.1 57.7 56.8 48.2 39.0 31.1 22.5 39.1
IL Chicago . . . . . . . . . . . . . . 12.9 17.2 28.5 38.6 47.7 57.5 62.6 61.6 53.9 42.2 31.6 19.1 39.5

Peoria . . . . . . . . . . . . . . . . 13.2 17.7 29.8 40.8 50.9 60.7 65.4 63.1 55.2 43.1 32.5 19.3 41.0
IN Indianapolis . . . . . . . . . . . 17.2 20.9 31.9 41.5 51.7 61.0 65.2 62.8 55.6 43.5 34.1 23.2 42.4
IA Des Moines . . . . . . . . . . . 10.7 15.6 27.6 40.0 51.5 61.2 66.5 63.6 54.5 42.7 29.9 16.1 40.0
KS Wichita . . . . . . . . . . . . . . . 19.2 23.7 33.6 44.5 54.3 64.6 69.9 67.9 59.2 46.6 33.9 23.0 45.0
KY Louisville . . . . . . . . . . . . . 23.2 26.5 36.2 45.4 54.7 62.9 67.3 65.8 58.7 45.8 37.3 28.6 46.0
LA New Orleans . . . . . . . . . . 41.8 44.4 51.6 58.4 65.2 70.8 73.1 72.8 69.5 58.7 51.0 44.8 58.5
ME Portland . . . . . . . . . . . . . . 11.4 13.5 24.5 34.1 43.4 52.1 58.3 57.1 48.9 38.3 30.4 17.8 35.8
MD Baltimore . . . . . . . . . . . . . 23.4 25.9 34.1 42.5 52.6 61.8 66.8 65.7 58.4 45.9 37.1 28.2 45.2
MA Boston . . . . . . . . . . . . . . . 21.6 23.0 31.3 40.2 49.8 59.1 65.1 64.0 56.8 46.9 38.3 26.7 43.6
MI Detroit . . . . . . . . . . . . . . . 15.6 17.6 27.0 36.8 47.1 56.3 61.3 59.6 52.5 40.9 32.2 21.4 39.0

Sault Ste. Marie . . . . . . . . 4.6 4.8 15.3 28.4 38.4 45.5 51.3 51.3 44.3 36.2 25.9 11.8 29.8
MN Duluth . . . . . . . . . . . . . . . −2.2 2.8 15.7 28.9 39.6 48.5 55.1 53.3 44.5 35.1 21.5 4.9 29.0

Minneapolis-St. Paul . . . 2.8 9.2 22.7 36.2 47.6 57.6 63.1 60.3 50.3 38.8 25.2 10.2 35.3
MS Jackson . . . . . . . . . . . . . . . 32.7 35.7 44.1 51.9 60.0 67.1 70.5 69.7 63.7 50.3 42.3 36.1 52.0
MO Kansas City . . . . . . . . . . . 16.7 21.8 32.6 43.8 53.9 63.1 68.2 65.7 56.9 45.7 33.6 21.9 43.7

St. Louis . . . . . . . . . . . . . . 20.8 25.1 35.5 46.4 56.0 65.7 70.4 67.9 60.5 48.3 37.7 26.0 46.7
MT Great Falls . . . . . . . . . . . . 11.6 17.2 22.8 31.9 40.9 48.6 53.2 52.2 43.5 35.8 24.3 14.6 33.1

Source: U.S. National Oceanic and Atmospheric Administration, Climatography of the United States, No. 81.
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then the sample mean of the data set y1, . . . , yn is

ȳ =
n∑

i=1

(axi + b)/n =
n∑

i=1

axi/n +
n∑

i=1

b/n = ax̄ + b

EXAMPLE 2.3a The winning scores in the U.S. Masters golf tournament in the years from
1982 to 1991 were as follows:

284, 280, 277, 282, 279, 285, 281, 283, 278, 277

Find the sample mean of these scores.

SOLUTION Rather than directly adding these values, it is easier to first subtract 280 from
each one to obtain the new values yi = xi − 280:

4, 0, −3, 2, −1, 5, 1, 3, −2, −3

Because the arithmetic average of the transformed data set is

ȳ = 6/10

it follows that

x̄ = ȳ + 280 = 280.6 ■

Sometimes we want to determine the sample mean of a data set that is presented in
a frequency table listing the k distinct values v1, . . . , vk having corresponding frequencies
f1, . . . , fk . Since such a data set consists of n = ∑k

i=1 fi observations, with the value vi

appearing fi times, for each i = 1, . . . , k, it follows that the sample mean of these n data
values is

x̄ =
k∑

i=1

vi fi/n

By writing the preceding as

x̄ = f1
n

v1 + f2
n

v2 + · · · + fk
n

vk

we see that the sample mean is a weighted average of the distinct values, where the weight
given to the value vi is equal to the proportion of the n data values that are equal to
vi , i = 1, . . . , k.
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EXAMPLE 2.3b The following is a frequency table giving the ages of members of a symphony
orchestra for young adults.

Age Frequency

15 2
16 5
17 11
18 9
19 14
20 13

Find the sample mean of the ages of the 54 members of the symphony.

SOLUTION

x̄ = (15 · 2 + 16 · 5 + 17 · 11 + 18 · 9 + 19 · 14 + 20 · 13)/54 ≈ 18.24 ■

Another statistic used to indicate the center of a data set is the sample median; loosely
speaking, it is the middle value when the data set is arranged in increasing order.

Definition
Order the values of a data set of size n from smallest to largest. If n is odd, the sample
median is the value in position (n + 1)/2; if n is even, it is the average of the values in
positions n/2 and n/2 + 1.

Thus the sample median of a set of three values is the second smallest; of a set of four
values, it is the average of the second and third smallest.

EXAMPLE 2.3c Find the sample median for the data described in Example 2.3b.

SOLUTION Since there are 54 data values, it follows that when the data are put in increasing
order, the sample median is the average of the values in positions 27 and 28. Thus, the
sample median is 18.5. ■

The sample mean and sample median are both useful statistics for describing the
central tendency of a data set. The sample mean makes use of all the data values and
is affected by extreme values that are much larger or smaller than the others; the sample
median makes use of only one or two of the middle values and is thus not affected by
extreme values. Which of them is more useful depends on what one is trying to learn
from the data. For instance, if a city government has a flat rate income tax and is trying to
estimate its total revenue from the tax, then the sample mean of its residents’ income would
be a more useful statistic. On the other hand, if the city was thinking about constructing
middle-income housing, and wanted to determine the proportion of its population able
to afford it, then the sample median would probably be more useful.
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EXAMPLE 2.3d In a study reported in Hoel, D. G., “A representation of mortality data by
competing risks,” Biometrics, 28, pp. 475–488, 1972, a group of 5-week-old mice were
each given a radiation dose of 300 rad. The mice were then divided into two groups;
the first group was kept in a germ-free environment, and the second in conventional
laboratory conditions. The numbers of days until death were then observed. The data for
those whose death was due to thymic lymphoma are given in the following stem and leaf
plots (whose stems are in units of hundreds of days); the first plot is for mice living in the
germ-free conditions, and the second for mice living under ordinary laboratory conditions.

Germ-Free Mice

1 58, 92, 93, 94, 95
2 02, 12, 15, 29, 30, 37, 40, 44, 47, 59
3 01, 01, 21, 37
4 15, 34, 44, 85, 96
5 29, 37
6 24
7 07
8 00

Conventional Mice

1 59, 89, 91, 98
2 35, 45, 50, 56, 61, 65, 66, 80
3 43, 56, 83
4 03, 14, 28, 32

Determine the sample means and the sample medians for the two sets of mice.

SOLUTION It is clear from the stem and leaf plots that the sample mean for the set of mice put
in the germ-free setting is larger than the sample mean for the set of mice in the usual labora-
tory setting; indeed, a calculation gives that the former sample mean is 344.07, whereas the
latter one is 292.32. On the other hand, since there are 29 data values for the germ-free mice,
the sample median is the 15th largest data value, namely, 259; similarly, the sample median
for the other set of mice is the 10th largest data value, namely, 265. Thus, whereas the
sample mean is quite a bit larger for the first data set, the sample medians are approximately
equal. The reason for this is that whereas the sample mean for the first set is greatly affected
by the five data values greater than 500, these values have a much smaller effect on the
sample median. Indeed, the sample median would remain unchanged if these values were
replaced by any other five values greater than or equal to 259. It appears from the stem and
leaf plots that the germ-free conditions probably improved the life span of the five longest
living rats, but it is unclear what, if any, effect it had on the life spans of the other rats. ■



22 Chapter 2: Descriptive Statistics

Another statistic that has been used to indicate the central tendency of a data set is the
sample mode, defined to be the value that occurs with the greatest frequency. If no single
value occurs most frequently, then all the values that occur at the highest frequency are
called modal values.

EXAMPLE 2.3e The following frequency table gives the values obtained in 40 rolls of a die.

Value Frequency

1 9
2 8
3 5
4 5
5 6
6 7

Find (a) the sample mean, (b) the sample median, and (c) the sample mode.

SOLUTION (a) The sample mean is

x̄ = (9 + 16 + 15 + 20 + 30 + 42)/40 = 3. 05

(b) The sample median is the average of the 20th and 21st smallest values, and is thus
equal to 3. (c) The sample mode is 1, the value that occurred most frequently. ■

2.3.2 Sample Variance and Sample Standard Deviation

Whereas we have presented statistics that describe the central tendencies of a data set,
we are also interested in ones that describe the spread or variability of the data values.
A statistic that could be used for this purpose would be one that measures the average
value of the squares of the distances between the data values and the sample mean. This
is accomplished by the sample variance, which for technical reasons divides the sum of
the squares of the differences by n − 1 rather than n, where n is the size of the data set.

Definition
The sample variance, call it s2, of the data set x1, . . . , xn is defined by

s2 =
n∑

i=1

(xi − x̄)2/(n − 1)

EXAMPLE 2.3f Find the sample variances of the data sets A and B given below.

A : 3, 4, 6, 7, 10 B : −20, 5, 15, 24
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SOLUTION As the sample mean for data set A is x̄ = (3 + 4 + 6 + 7 + 10)/5 = 6, it follows
that its sample variance is

s2 = [(−3)2 + (−2)2 + 02 + 12 + 42]/4 = 7.5

The sample mean for data set B is also 6; its sample variance is

s2 = [(−26)2 + (−1)2 + 92 + (18)2]/3 ≈ 360.67

Thus, although both data sets have the same sample mean, there is a much greater
variability in the values of the B set than in the A set. ■

The following algebraic identity is often useful for computing the sample variance:

An Algebraic Identity
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2

The identity is proven as follows:

n∑
i=1

(xi − x̄)2 =
n∑

i=1

(
x2
i − 2xi x̄ + x̄2)

=
n∑

i=1

x2
i − 2x̄

n∑
i=1

xi +
n∑

i=1

x̄2

=
n∑

i=1

x2
i − 2nx̄2 + nx̄2

=
n∑

i=1

x2
i − nx̄2

The computation of the sample variance can also be eased by noting that if

yi = a + bxi , i = 1, . . . , n

then ȳ = a + bx̄, and so
n∑

i=1

( yi − ȳ)2 = b2
n∑

i=1

(xi − x̄)2

That is, if s2y and s2x are the respective sample variances, then

s2y = b2s2x
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In other words, adding a constant to each data value does not change the sample variance;
whereas multiplying each data value by a constant results in a new sample variance that is
equal to the old one multiplied by the square of the constant.

EXAMPLE 2.3g The following data give the worldwide number of fatal airline accidents
of commercially scheduled air transports in the years from 1985 to 1993.

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993

Accidents 22 22 26 28 27 25 30 29 24
Source: Civil Aviation Statistics of the World, annual.

Find the sample variance of the number of accidents in these years.

SOLUTION Let us start by subtracting 22 from each value, to obtain the new data set:

0, 0, 4, 6, 5, 3, 8, 7, 2

Calling the transformed data y1, . . . , y9, we have
n∑

i=1

yi = 35,
n∑

i=1

y2
i = 16 + 36 + 25 + 9 + 64 + 49 + 4 = 203

Hence, since the sample variance of the transformed data is equal to that of the original
data, upon using the algebraic identity we obtain

s2 = 203 − 9(35/9)2

8
≈ 8.361 ■

Program 2.3 on the text disk can be used to obtain the sample variance for large data
sets.

The positive square root of the sample variance is called the sample standard deviation.

Definition
The quantity s, defined by

s =
√√√√ n∑

i=1

(xi − x̄)2/(n − 1)

is called the sample standard deviation.

The sample standard deviation is measured in the same units as the data.

2.3.3 Sample Percentiles and Box Plots

Loosely speaking, the sample 100p percentile of a data set is that value such that 100p
percent of the data values are less than or equal to it, 0 ≤ p ≤ 1. More formally, we have
the following definition.
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Definition
The sample 100p percentile is that data value such that 100p percent of the data are less
than or equal to it and 100(1 − p) percent are greater than or equal to it. If two data values
satisfy this condition, then the sample 100p percentile is the arithmetic average of these
two values.

To determine the sample 100p percentile of a data set of size n, we need to determine
the data values such that

1. At least np of the values are less than or equal to it.

2. At least n(1 − p) of the values are greater than or equal to it.

To accomplish this, first arrange the data in increasing order. Then, note that if np is not
an integer, then the only data value that satisfies the preceding conditions is the one whose
position when the data are ordered from smallest to largest is the smallest integer exceeding
np. For instance, if n = 22, p = .8, then we require a data value such that at least 17.6 of
the values are less than or equal to it, and at least 4.4 of them are greater than or equal to
it. Clearly, only the 18th smallest value satisfies both conditions and this is the sample 80
percentile. On the other hand, if np is an integer, then it is easy to check that both the
values in positions np and np + 1 satisfy the preceding conditions, and so the sample 100p
percentile is the average of these values.

EXAMPLE 2.3h Table 2.6 lists the populations of the 25 most populous U.S. cities for the
year 1994. For this data set, find (a) the sample 10 percentile and (b) the sample 80
percentile.

SOLUTION (a) Because the sample size is 25 and 25(.10) = 2.5, the sample 10 percentile
is the third smallest value, equal to 520,947.

(b) Because 25(.80) = 20, the sample 80 percentile is the average of the twentieth and
the twenty-first smallest values. Hence, the sample 80 percentile is

1,151,977 + 1,524,249

2
= 1,338,113 ■

The sample 50 percentile is, of course, just the sample median. Along with the sample
25 and 75 percentiles, it makes up the sample quartiles.

Definition
The sample 25 percentile is called the first quartile; the sample 50 percentile is called the
sample median or the second quartile; the sample 75 percentile is called the third quartile.

The quartiles break up a data set into four parts, with roughly 25 percent of the data
being less than the first quartile, 25 percent being between the first and second quartile,
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TABLE 2.6 Population of 25 Largest U.S. Cities, 1994

Rank City Population

1 New York, NY. . . . . . . . . . . . . . . . . 7,333,253
2 Los Angeles, CA . . . . . . . . . . . . . . . 3,448,613
3 Chicago, IL . . . . . . . . . . . . . . . . . . . 2,731,743
4 Houston, TX . . . . . . . . . . . . . . . . . . 1,702,086
5 Philadelphia, PA . . . . . . . . . . . . . . . 1,524,249
6 San Diego, CA. . . . . . . . . . . . . . . . . 1,151,977
7 Phoenix, AR. . . . . . . . . . . . . . . . . . . 1,048,949
8 Dallas, TX . . . . . . . . . . . . . . . . . . . . 1,022,830
9 San Antonio, TX. . . . . . . . . . . . . . . 998,905

10 Detroit, MI . . . . . . . . . . . . . . . . . . . 992,038
11 San Jose, CA . . . . . . . . . . . . . . . . . . 816,884
12 Indianapolis, IN . . . . . . . . . . . . . . . 752,279
13 San Francisco, CA. . . . . . . . . . . . . . 734,676
14 Baltimore, MD . . . . . . . . . . . . . . . . 702,979
15 Jacksonville, FL . . . . . . . . . . . . . . . . 665,070
16 Columbus, OH . . . . . . . . . . . . . . . . 635,913
17 Milwaukee, WI . . . . . . . . . . . . . . . . 617,044
18 Memphis, TN . . . . . . . . . . . . . . . . . 614,289
19 El Paso, TX . . . . . . . . . . . . . . . . . . . 579,307
20 Washington, D.C. . . . . . . . . . . . . . 567,094
21 Boston, MA . . . . . . . . . . . . . . . . . . . 547,725
22 Seattle, WA . . . . . . . . . . . . . . . . . . . 520,947
23 Austin, TX . . . . . . . . . . . . . . . . . . . . 514,013
24 Nashville, TN . . . . . . . . . . . . . . . . . 504,505
25 Denver, CO . . . . . . . . . . . . . . . . . . . 493,559

25 percent being between the second and third quartile, and 25 percent being greater than
the third quartile.

EXAMPLE 2.3i Noise is measured in decibels, denoted as dB. One decibel is about the level
of the weakest sound that can be heard in a quiet surrounding by someone with good
hearing; a whisper measures about 30 dB; a human voice in normal conversation is about
70 dB; a loud radio is about 100 dB. Ear discomfort usually occurs at a noise level of about
120 dB.

The following data give noise levels measured at 36 different times directly outside of
Grand Central Station in Manhattan.

82, 89, 94, 110, 74, 122, 112, 95, 100, 78, 65, 60, 90, 83, 87, 75, 114, 85

69, 94, 124, 115, 107, 88, 97, 74, 72, 68, 83, 91, 90, 102, 77, 125, 108, 65

Determine the quartiles.
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30 31.5 34
4027

FIGURE 2.7 A box plot.

SOLUTION A stem and leaf plot of the data is as follows:

6 0, 5, 5, 8, 9
7 2, 4, 4, 5, 7, 8
8 2, 3, 3, 5, 7, 8, 9
9 0, 0, 1, 4, 4, 5, 7

10 0, 2, 7, 8
11 0, 2, 4, 5
12 2, 4, 5

The first quartile is 74.5, the average of the 9th and 10th smallest data values; the second
quartile is 89.5, the average of the 18th and 19th smallest values; the third quartile is
104.5, the average of the 27th and 28th smallest values. ■

A box plot is often used to plot some of the summarizing statistics of a data set. A straight
line segment stretching from the smallest to the largest data value is drawn on a horizontal
axis; imposed on the line is a “box,” which starts at the first and continues to the third
quartile, with the value of the second quartile indicated by a vertical line. For instance,
the 42 data values presented in Table 2.1 go from a low value of 27 to a high value of 40.
The value of the first quartile (equal to the value of the 11th smallest on the list) is 30; the
value of the second quartile (equal to the average of the 21st and 22nd smallest values) is
31.5; and the value of the third quartile (equal to the value of the 32nd smallest on the
list) is 34. The box plot for this data set is shown in Figure 2.7.

The length of the line segment on the box plot, equal to the largest minus the smallest
data value, is called the range of the data. Also, the length of the box itself, equal to the
third quartile minus the first quartile, is called the interquartile range.

2.4 CHEBYSHEV’S INEQUALITY
Let x̄ and s be the sample mean and sample standard deviation of a data set. Assuming that
s > 0, Chebyshev’s inequality states that for any value of k ≥ 1, greater than 100(1 − 1/k2)
percent of the data lie within the interval from x̄ − ks to x̄ + ks. Thus, by letting k = 3/2,
we obtain from Chebyshev’s inequality that greater than 100(5/9) = 55.56 percent of the
data from any data set lies within a distance 1.5s of the sample mean x̄; letting k = 2 shows
that greater than 75 percent of the data lies within 2s of the sample mean; and letting k = 3
shows that greater than 800/9 ≈ 88.9 percent of the data lies within 3 sample standard
deviations of x̄.
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When the size of the data set is specified, Chebyshev’s inequality can be sharpened, as
indicated in the following formal statement and proof.

Chebyshev’s Inequality
Let x̄ and s be the sample mean and sample standard deviation of the data set consisting

of the data x1, . . . , xn, where s > 0. Let

Sk = {i, 1 ≤ i ≤ n : |xi − x̄| < ks}
and let N (Sk) be the number of elements in the set Sk . Then, for any k ≥ 1,

N (Sk)

n
≥ 1 − n − 1

nk2 > 1 − 1

k2

Proof

(n − 1)s2 =
n∑

i=1

(xi − x̄)2

=
∑
i∈Sk

(xi − x̄)2 +
∑
i �∈Sk

(xi − x̄)2

≥
∑
i �∈Sk

(xi − x̄)2

≥
∑
i �∈Sk

k2s2

= k2s2(n − N (Sk))

where the first inequality follows because all terms being summed are nonnegative, and the
second follows since (x1 − x̄)2 ≥ k2s2 when i �∈ Sk . Dividing both sides of the preceding
inequality by nk2s2 yields that

n − 1

nk2 ≥ 1 − N (Sk)

n

and the result is proven. �

Because Chebyshev’s inequality holds universally, it might be expected for given data
that the actual percentage of the data values that lie within the interval from x̄ − ks to
x̄ + ks might be quite a bit larger than the bound given by the inequality.

EXAMPLE 2.4a Table 2.7 lists the 10 top-selling passenger cars in the United States in
1999. A simple calculation gives that the sample mean and sample standard deviation of
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TABLE 2.7 Top 10 Selling Cars for 1999

1999

1. Toyota Camry . . . . . . . . . . . . . . . . . 448,162
2. Honda Accord . . . . . . . . . . . . . . . . . 404,192
3. Ford Taurus . . . . . . . . . . . . . . . . . . . 368,327
4. Honda Civic . . . . . . . . . . . . . . . . . . 318,308
5. Chevy Cavalier . . . . . . . . . . . . . . . . 272,122
6. Ford Escort . . . . . . . . . . . . . . . . . . . 260,486
7. Toyota Corolla . . . . . . . . . . . . . . . . 249,128
8. Pontiac Grand Am . . . . . . . . . . . . . 234,936
9. Chevy Malibu . . . . . . . . . . . . . . . . . 218,540

10. Saturn S series . . . . . . . . . . . . . . . . . 207,977

these data are
x̄ = 298,217.8, s = 124,542.9

Thus Chebyshev’s inequality yields that at least 100(5/9) = 55.55 percent of the data lies
in the interval (

x̄ − 3

2
s, x̄ + 3

2
s
)

= (173,674.9, 422, 760.67)

whereas, in actuality, 90 percent of the data falls within those limits. ■

Suppose now that we are interested in the fraction of data values that exceed the sample
mean by at least k sample standard deviations, where k is positive. That is, suppose that x̄
and s are the sample mean and the sample standard deviation of the data set x1, x2, . . . , xn.
Then, with

N (k) = number of i : xi − x̄ ≥ ks

what can we say about N (k)/n? Clearly,

N (k)

n
≤ number of i : |xi − x̄| ≥ ks

n

≤ 1

k2 by Chebyshev’s inequality

However, we can make a stronger statement, as is shown in the following one-sided version
of Chebyshev’s inequality.

The One-Sided Chebyshev Inequality
For k > 0,

N (k)

n
≤ 1

1 + k2
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