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a b s t r a c t

A general family of univariate distributions generated by beta
random variables, proposed by Jones, has been discussed recently
in the literature. This family of distributions possesses great
flexibility while fitting symmetric as well as skewed models
with varying tail weights. In a similar vein, we define here a
family of univariate distributions generated by Stacy’s generalized
gammavariables. For these two families of univariate distributions,
we discuss maximum entropy characterizations under suitable
constraints. Based on these characterizations, an expected ratio of
quantile densities is proposed for the discrimination of members
of these two broad families of distributions. Several special cases
of these results are then highlighted. An alternative to the usual
method of moments is also proposed for the estimation of the
parameters, and the form of these estimators is particularly
amenable to these two families of distributions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, attempts have been made to define new families of probability distributions that extend
well-known families of distributions and at the same time provide great flexibility in modelling
data in practice. One such example is a broad family of univariate distributions generated from
the beta distribution, proposed by Jones [1] (see also [2]), which extends the original beta family
of distributions with the incorporation of two additional parameters. These parameters control the
skewness and the tail weight. Earlier, with a similar goal in mind, Eugene et al. [3] defined the family
of beta-normal distributions and discussed its properties.
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Following the notation of Jones [1], the class of ‘‘beta-generated distributions’’ is defined as follows.
Consider a continuous distribution function F with density function f . Then, the univariate family of
distributions generated by F , and the parameters α, β > 0, has its pdf as [1]

g(B)F (x;α, β) =
1

B(α, β)
f (x) {F(x)}α−1 {1− F(x)}β−1 , α > 0 and β > 0, (1)

where B(α, β) =
∫ 1
0 t

α−1(1− t)β−1dt is the complete beta function. Thus, this family of distributions
has its cdf as

G(B)F (x) = IF(x)(α, β), α > 0 and β > 0, (2)

where the function IF(x) denotes the incomplete beta ratio defined by

Iy(α, β) =
By(α, β)
B(α, β)

,

where

By(α, β) =
∫ y

0
tα−1(1− t)β−1dt, 0 < y < 1,

is the incomplete beta function.
Following the terminology of Arnold in the discussion of Jones’ [1] paper, the distribution F

will be referred to as the ‘‘parent distribution’’ in what follows. Based on Jones and Larsen [4], the
attractiveness of (1) is that from a symmetric f as parent pdf (corresponding to α = β = 1), a large
family of distributions can be generatedwith the parametersα andβ controlling the skewness and the
tail weight. The expression in (2) reveals that it is quite easy to simulate observations from X ∼ G(B)F , as
shown by Jones [1], through the relationship X = F−1(B), where B ∼ Beta(α, β). The case α = β = 1
corresponds to the well-known quantile function representation X = F−1(U), where U ∼ U(0, 1),
which is used in order to generate data from the distribution F . Finally, in the case when α and β
are positive integers, the beta-generated model in (1) is the distribution of the ith order statistic in a
random sample of size n from distribution F , where i = α and n = α + β − 1.
The idea of beta-generated family of distributions gF stemmed from the paper of Eugene et al. [3],

wherein the beta-normal distributionwas introduced and its propertieswere studied. Specifically, ifφ
denotes the density of the normal distribution andΦ the corresponding distribution function, then gΦ
is the beta-normal distribution considered by Eugene et al. [3]. Some other beta-generated families of
distributions have also beendiscussed in the literature. For example, the beta-exponential distribution
has been defined and studied by Nadarajah and Kotz [5]. Similarly, the beta-logistic distribution can
also be generated through the beta variable, but it has been known as a tractable set of statistical
models based on the logarithm of a F-variate; see [6]. The beta-logistic distribution has been reviewed
by Jones [1] who has also discussed the skew-t distributions. All thesemembers of the beta-generated
family in (1) and some others have been reobtained by means of the maximum entropy principle
by Zografos [7] who has also considered the beta-Weibull distribution through this principle. Jones’
family of beta-generated distributions in (1) has received great attention recently. Arnold et al. [8]
introduced and studied a multivariate version of this family, while Ferreira and Steel [9,10] used it as
a skewing mechanism for constructing skewed distributions.
The aim of this paper is two-fold. In the first part, wewill concentrate on the family in (1). Ourmain

concernwill then be to construct procedures to discriminate betweenmembers of this family. In other
words, our aimwill be to derive a test which would enable us to decide if a random sample from (1) is
coming from a specific parent distribution F . The proposed procedures will be based on information
theoretic methods and, in particular, on the maximum entropy principle. In the second part, we will
define a broad family of univariate distributions, in the same vein as Jones’ family, through Stacy’s
generalized gamma density generated by the parent distribution F .
In Section 2, we present suitable constraints leading to the maximum entropy characterization of

the family in (1). Section 3 is devoted to the definition of a new family of distributions through Stacy’s
generalized gamma density generated by the parent distribution F , and the derivation of constraints
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leading to its maximum entropy characterization. In Section 4, an alternative to the method of
moments is discussed for the estimation of the parameters of beta- and generalized gamma-generated
distributions with a parent distribution F . The constraints needed to obtain the maximum entropy
characterization of these families of distributions enable us to introduce in Section 5 test statistics
for the discrimination between members within these two families. Several univariate distributions,
generated by beta and gamma models, will be presented in illustrative examples and their moments
and Shannon entropies will be derived in a closed form.

2. Jones’ distribution and maximum entropy identification

The notion of entropy is of fundamental importance in different areas such as physics, probability
and statistics, communication theory, and economics. Since Shannon’s [11] pioneering work on the
mathematical theory of communication, Shannon entropy of a continuous distribution with density,
say gF , defined by

HSh(gF ) = −
∫
∞

−∞

gF (x) ln gF (x)dx, (3)

has become amajor tool in information theory and in almost every branch of science and engineering.
Closely related to the Shannon entropy is the maximum entropy method for the identification of a
probabilistic model. This method considers a class of density functions

F =
{
gF (x) : EgF [Ti(X)] = αi, i = 0, 1, . . . ,m

}
,

where Ti, i = 0, 1, . . . ,m, are absolutely integrable functions with respect to gF , and T0(X) = α0 = 1.
In the continuous case, the maximum entropy principle suggests to derive the unknown density
function of the random variable X by the model that maximizes the Shannon entropy in (3), subject
to the information constraints defined in the class F . This method, introduced by Jaynes [12], as a
general method of inference, has been treated axiomatically by Shore and Johnson [13]. It has been
successfully applied in awide variety of fields andhas also beenused for the characterization of several
standard probability distributions; see, for example, [14,15,7], and the references contained therein.
The maximum entropy distribution, denoted by the density gMEF of the class F , is obtained as the

solution of the optimization problem

gMEF (x) = argmax
gF∈F

HSh(gF ).

Jaynes [12, p. 623], stated that the maximum entropy distribution gMEF , obtained by the above
constrained maximization problem, ‘‘is the only unbiased assignment we can make; to use any other
would amount to arbitrary assumption of information which by hypothesis we do not have’’. It is
the distribution which should not incorporate any additional exterior information other than what is
specified by the constraints.
In order to provide a maximum entropy characterization of Jones’ family in (1), we need to derive

suitable constraints that define the above classF . For this purpose, the next two lemmas play a crucial
role.

Lemma 1. If F and f are the parent cdf and pdf, respectively, and g(B)F is the corresponding density of Jones’
family in (1), then
(a) Eg(B)F

[ln F(X)] = Ψ (α)− Ψ (α + β);
(b) Eg(B)F

[ln(1− F(X))] = Ψ (β)− Ψ (α + β);

(c) Eg(B)F
[ln f (X)] = EY [ln f (F−1(Y ))],

where Y ∼ Beta(α, β) and Ψ denotes the digamma function.

Proof. (a) Using the transformation y = F(x),

Eg(B)F
[ln F(X)] =

1
B(α, β)

∫ 1

0
(ln y) yα−1(1− y)β−1dy. (4)



K. Zografos, N. Balakrishnan / Statistical Methodology 6 (2009) 344–362 347

It is easy to see that

∂

∂α
B(α, β) =

∫ 1

0
(ln y) yα−1(1− y)β−1dy, (5)

while

∂

∂α
B(α, β) =

∂

∂α

0(α)0(β)

0(α + β)
= B(α, β) {Ψ (α)− Ψ (α + β)} . (6)

Upon using Eqs. (4)–(6), we arrive at the desired result.
(b) The proof is similar to that of Part (a) and is therefore omitted.
(c) In order to prove this part, upon using the transformation y = F(x), we obtain

Eg(B)F
[ln f (X)] =

∫ 1

0

{
ln f (F−1(y))

} 1
B(α, β)

yα−1(1− y)β−1dy

= EY [ln f (F−1(Y ))],

where Y ∼ Beta(α, β). N

It is well known that if X is a continuous random variable with distribution function F , then
Y = F(X) follows a uniform distribution U(0, 1). The next lemma states an extension of this result, in
the sense that if the random variable X has Jones’ density in (1) with parent distribution F , then the
random variable Y = F(X) follows a beta distribution Beta(α, β).

Lemma 2. Let the randomvariable X be described by Jones’ distribution G(B)F given in (2). Then, the random
variable Y = F(X) has a beta Beta(α, β) distribution.
Proof. It can be easily shown from (2) that the distribution function FY of Y is given by

FY (y) = P(X ≤ F−1(y)) = Iy(α, β),

which is the required result. N

The next proposition shows that Jones’ distribution has maximum entropy in the class of all
probability distributions specified by the constraints stated therein.

Proposition 1. The density g(B)F of the random variable X, given by (1), is the unique solution of the
optimization problem

g(B)F (x) = argmaxh
HSh(h),

under the constraints

Eh[ln F(X)] = Ψ (α)− Ψ (α + β), (C1)

Eh[ln(1− F(X))] = Ψ (β)− Ψ (α + β), (C2)

Eh[ln f (X)] = EY [ln f (F−1(Y ))], where Y ∼ Beta(α, β). (C3)

Proof. Let h be a density satisfying the constraints (C1)–(C3). Now consider the well-known
Kullback–Leibler divergence between h and gF (see [16]) given by

D(h, g(B)F ) =
∫
h(x) ln

(
h(x)

g(B)F (x)

)
dx.

Then, following [17], we have

0 ≤ D(h, g(B)F ) =
∫
h(x) ln h(x)dx−

∫
h(x) ln g(B)F (x)dx

= −HSh(h)−
∫
h(x) ln g(B)F (x)dx. (7)
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Using the definition of the density g(B)F , as given in (1), and based on the constraints (C1)–(C3), we take∫
h(x) ln g(B)F (x)dx = − ln B(α, β)+ Eh[ln f (X)] + (α − 1)[Ψ (α)− Ψ (α + β)]

+(β − 1)[Ψ (β)− Ψ (α + β)]. (8)

Now utilizing Lemma 1 and Eqs. (1) and (8), we conclude that∫
h(x) ln g(B)F (x)dx =

∫
g(B)F (x) ln g

(B)
F (x)dx = −HSh(g

(B)
F ). (9)

Hence, from Eq. (7), we obtain

0 ≤ −HSh(h)+HSh(g
(B)
F ),

or equivalently

HSh(h) ≤ HSh(g
(B)
F ),

with equality if and only if D(h, g(B)F ) = 0, i.e., if and only if h = g
(B)
F , a.e. This completes the proof of

the proposition. N

The intermediate steps in the above proof in fact give the following explicit expression for the
Shannon entropy of Jones’ distribution in (1).

Corollary 1. The Shannon entropy of Jones’ distribution, with density in (1), is given by

HSh(g
(B)
F ) = ln B(α, β)− (α − 1)[Ψ (α)− Ψ (α + β)]

−(β − 1)[Ψ (β)− Ψ (α + β)] − EY [ln f (F−1(Y ))],

where Y ∼ Beta(α, β).

Proof. It is readily obtained from Eqs. (8) and (9) and constraint (C3). N

It is known that if F is symmetric, then the parameters α and β alone control the degree of
skewness. Also, it is evident that if the random variable X has density gX = g

(B)
F (x;α, β) given in

(1), then Y = −X has density gY = g
(B)
F (−x;β, α). So, it can be easily shown in this case that the

Shannon entropy remains invariant, i.e.,HSh(gX ) = HSh(gY ).

Example 1. As a first example, suppose the parent distribution is uniform in the interval (0, θ), θ > 0.
Then, f (x) = 1/θ , 0 < x < θ , and F(x) = x/θ , 0 < x < θ . In this case, the beta density generated by
the uniform distribution is given by

1
B(α, β)

1
θ

( x
θ

)α−1 (
1−

x
θ

)β−1
, 0 < x < θ, α, β > 0.

It can be easily shown that

EY [ln f (F−1(Y ))] = − ln θ,

which also leads to the Shannon entropy of the beta-uniform distribution by a simple application of
Corollary 1. N

Example 2. As a second example, let us consider the beta-exponential distribution (see [5]) with
density λ

B(α,β)e
−βλx

(
1− e−λx

)α−1, x > 0. This is a member of (1) when the parent density f and
the cdf F are that of the exponential distribution with parameter λ > 0, i.e., f (x) = λe−λx, x > 0, and
F(x) = 1− e−λx, x > 0. Simple algebraic manipulations lead to

EY [ln f (F−1(Y ))] = ln λ+ Ψ (β)− Ψ (α + β),
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and then to the Shannon entropy of the beta-exponential distribution by a simple application of
Corollary 1. It should be noted that the beta-exponential distribution extends the exponentiated
exponential distribution of Gupta and Kundu [18]. N

Example 3. Consider the beta-logistic or log -F distribution (see [6,1]) with density η

B(α,β)
e−ηβx

(1+e−ηx)α+β
,

x ∈ R, η > 0. This is obtained from (1) with parent density and cdf f (x) = ηe−ηx

(1+e−ηx)2
and F(x) = 1

1+e−ηx

for x ∈ R, η > 0, respectively. After some algebraic manipulations, it can be shown that

EY [ln f (F−1(Y ))] = ln η + Ψ (α)+ Ψ (β)− 2Ψ (α + β),

and then to the Shannon entropy by an application of Corollary 1. N

Example 4. Next, let us consider as parent distribution the Paretowith density and cdf as f (x) = kθk

xk+1
,

x ≥ θ > 0, and F(x) = 1−
(
θ
x

)k, x ≥ θ > 0 and k > 0, respectively. Then, the beta-Pareto distribution
has density

1
B(α, β)

kθ kβ

xkβ+1

{
1−

(
θ

x

)k}α−1
, x ≥ θ > 0,

and

EY [ln f (F−1(Y ))] = ln
k
θ
+
k+ 1
k
[Ψ (β)− Ψ (α + β)],

which can be used to obtain the Shannon entropy by an application of Corollary 1. N

Example 5. Let us consider the power function distributionwith pdf and cdf f (x) = kθ kxk−1, 0 < x <
1/θ , and F(x) = (θx)k, 0 < x < 1/θ and k > 0 as the parent. In this case, the beta-power function
distribution has density

1
B(α, β)

kθ kαxkα−1
{
1− (θx)k

}β−1
, 0 < x <

1
θ
,

and

EY [ln f (F−1(Y ))] = ln(kθ)+
k− 1
k
[Ψ (α)− Ψ (α + β)] . N

Example 6. The density and the cdf of half-logistic distribution is f (x) = 2e−x

(1+e−x)2
, x > 0, and

F(x) = 1−e−x
1+e−x , x > 0, respectively; see [19]. In this case, the beta-half-logistic distribution has density

2β

B(α, β)
e−βx(1− e−x)α−1

(1+ e−x)α+β
, 0 < x <∞,

and

EY [ln f (F−1(Y ))] = ln 2+ Ψ (β)− Ψ (α + β)+
1

B(α, β)

∫ 1

0
ln(1+ y) yα−1(1− y)β−1dy

= ln 2+ Ψ (β)− Ψ (α + β)+
∞∑
`=1

(−1)`−1
1
`

(α + `− 1)(`)

(α + β + `− 1)(`)
,

where a(`) = a(a− 1) . . . (a− `+ 1) is the `th downward factorial. N

Example 7. This final example considers the Weibull distribution with density and cdf as f (x) =
c
θc x

c−1e−(x/θ)
c
, x > 0, and F(x) = 1 − e−(x/θ)

c
for x > 0 and c, θ > 0, respectively. Then, the

beta-Weibull distribution, shown by Zografos [7] as the distribution which maximizes the Shannon
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entropy, has its density as

c
θ cB(α, β)

xc−1 exp
{
−β

( x
θ

)c} {
1− exp

(
−

( x
θ

)c)}α−1
, x > 0.

When β = 1, it is the Exponentiated-Weibull family introduced by Mudholkar and Srivastava [20].
For the beta-Weibull distribution, we also have

EY [ln f (F−1(Y ))] = ln
c
θ
+ [Ψ (β)− Ψ (α + β)] +

c − 1
c
EY [ln(− ln(1− Y ))],

where Y ∼ Beta(α, β). N

Remark 1. Looking at Corollary 1, we observe that the Shannon entropy of the beta-generated family
of distributions in (1) is factored into two parts. The first part is related to the parameters α and β
of the beta distribution which is the first ingredient in the construction of the family in (1), while
the second part is purely related to the ‘‘parent’’ distribution F which is the second ingredient in
the construction of the family in (1). Moreover, all members of the family in (1) have the first part
in common and they are discriminated between each other only by means of the second part, viz.,
the term EY [ln f (F−1(Y ))], where Y ∼ Beta(α, β), which depends on the ‘‘parent’’ distribution of
the model. If the distribution function of a random variable X belongs to the family in (1), then
the maximum entropy principle, as already mentioned, suggests to choose the model in (1) which
maximizes the Shannon entropy, as the most appropriate model to describe the unknown density
function of X . Based on the observation above, the term EY [ln f (F−1(Y ))], where Y ∼ Beta(α, β),
plays the key role in specifying the particular member of (1) that maximizes the entropy HSh(g

(B)
F ),

and so this term can be used to discriminate between the members of the family in (1). Section 5
concentrates on some inferential issues in this direction.

3. Generalized gamma-generated by parent distribution F

A family of univariate continuous distributions will be introduced in this section through a
particular case of Stacy’s generalized gamma distribution, in the same spirit as Jones’ family defined
through the beta distribution. Some of the properties of this family will be explored and a maximum
entropy characterization will be obtained which will be exploited later in Section 5 in order to
construct a statistical test for the discrimination between members of this family.
Consider a continuous distribution F with density f , and further Stacy’s generalized gammadensity

γ

0(δ)
uγ δ−1e−u

γ
for u > 0 and positive values of the parameters γ and δ. Based on this density, by

replacing u by− ln(1− F(x)), we introduce the family with pdf

g(S)F (x; γ , δ) =
γ

0(δ)
{− ln(1− F(x))}γ δ−1 e−{− ln(1−F(x))}

γ f (x)
1− F(x)

, x ∈ R, γ , δ > 0. (10)

This is the generalized gamma (or Stacy)-generated distribution by parent F . If γ = 1 in (10), it
corresponds to the gamma-generated distribution by parent F . This family of distributions has its
pdf as

g(G)F (x; δ) =
1

0(δ)
{− ln(1− F(x))}δ−1 e−{− ln(1−F(x))}

f (x)
1− F(x)

=
1

0(δ)
{− ln(1− F(x))}δ−1 f (x), x ∈ R, δ > 0. (11)

Remark 2. Suppose XU(1), XU(2), . . . , XU(n), . . . are upper record values arising froma sequence of i.i.d.
continuous random variables from a population with cdf G(x) and pdf g(x). Then, the pdf of the nth
upper record value, XU(n), is (see [21])

gXU(n)(x) =
{− ln(1− G(x)}n−1

(n− 1)!
g(x), −∞ < x <∞,
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for n = 1, 2, . . .. Upon converting the positive integral parameter n to a positive real parameter δ, we
readily obtain the family of densities with pdf

fδ(x) =
{− ln(1− G(x)}δ−1

0(δ)
g(x), −∞ < x <∞, δ > 0.

Observe that this is precisely the class of gamma-generated densities. Hence, just as Jones’ family of
distributions is generated by order statistics densities, the class in (10), for the case γ = 1, is generated
by record value densities. This explicitly implies that the model in (11) is a direct record-analog.
Inwhat follows,wewill focus on the family of gamma-generateddistributionswith parent F , which

is defined by (11). It can be easily shown that the distribution function of the family (11) is given by

G(G)F (x) =
1

0(δ)
I− ln(1−F(x))(δ), δ > 0,

where Iω(δ) =
∫ ω
0 e
−zzδ−1dz is the incomplete gamma function.

A logarithmic transformation of the parent distribution F transforms the random variable X with
density (11) to a gamma distribution. That is, if X has a density of the form (11), then the random
variable Z = − ln(1 − F(X)) has a gamma distribution G(δ, 1) with density 1

0(δ)
e−zzδ−1, z > 0. The

opposite is also true, that is, if Z has a gamma distribution G(δ, 1) with density 1
0(δ)
e−zzδ−1, z > 0,

then the random variable X = F−1(1 − e−Z ) has a gamma distribution generated by the parent
distribution F , with density (11). This helps to generate random numbers from the density g(G)F simply
from observations from a gamma distribution G(δ, 1), δ > 0.
A general expression for the moments of the gamma density generated by the distribution F is

presented now. Indeed, the νth moment of g(G)F defined by (11) is

Eg(G)F
[Xν] =

∫
+∞

−∞

xν
1

0(δ)
{− ln(1− F(x))}δ−1 f (x)dx.

Using the transformation y = F(x), we obtain

Eg(G)F
[Xν] =

∫ 1

0
[F−1(y)]ν

1
0(δ)
{− ln(1− F(x))}δ−1 dy, (12)

a formula quite similar to that of Arnold et al. [21, p. 30]. It is possible, in some cases, to obtain an
analytic form for the moments Eg(G)F

[Xν] of g(G)F , given by (12), and these are given in the examples of

this section for some specific choices of g(G)F .
The next result presents the expected values of some special transformations of the parent density

and distribution functions f and F , whichwill be used later for themaximumentropy characterization
of g(G)F .

Lemma 3. For the gamma density g(G)F , generated by the parent distribution F , we have
(a) Eg(G)F

{ln[− ln(1− F(X))]} = Ψ (δ),

(b) Eg(G)F
[ln f (X)] = EZ {ln f (F−1(1− e−Z ))},

where Z has gamma distribution G(δ, 1)with density 1
0(δ)
e−zzδ−1, z > 0, and Ψ (·) denotes the digamma

function.

Proof. Both parts of the lemma are proved by using first the transformation y = F(x) in the integrals
and then the transformation z = − ln(1 − y). We will outline only the proof of Part (a). Using the
above transformations,

Eg(G)F
{ln[− ln(1− F(X))]} =

1
0(δ)

∫
∞

0
(ln z)e−zzδ−1dz.

The proof is completed by observing that the last integral is expressed as the derivative ddδ0(δ). N
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Remark 3. A series expansion of integrals of the form
∫
∞

0 (ln x)e
−xxδ−1dx is given in Lemma 1 by

Baratpour et al. [22], for δ a natural number. Similar formulas for the expected values of the lemma
have been derived in Eqs. (7) and (8) of Baratpour et al. [22] for the case of natural δ.
The next proposition shows that the gamma distribution generated by F has maximum entropy

in the class of all probability distributions specified by the constraints (G1) and (G2) stated in the
proposition. The proof follows exactly along the same lines as those in the proof of the similar
proposition for Jones’ family, and is therefore omitted.

Proposition 2. The density g(G)F of the random variable X, given by (11), is the unique solution of the
optimization problem

g(G)F (x) = argmax
h

HSh(h),

under the constraints

Eh{ln[− ln(1− F(X))]} = Ψ (δ), (G1)

and

Eh[ln f (X)] = EZ {ln f (F−1(1− e−Z ))}, (G2)

where Z is a gamma random variable with density 1
0(δ)
e−zzδ−1, z > 0.

Direct use of the constraints (G1) and (G2) leads to the Shannon entropy of the gamma density g(G)F ,
generated by F .

Corollary 2. The expression of Shannon entropy of gamma density g(G)F is given by

HSh

(
g(G)F

)
= ln0(δ)− (δ − 1)Ψ (δ)− EZ {ln f (F−1(1− e−Z ))},

with Z being the gamma random variable of the above proposition.

A similar expression for Shannon entropy of g(G)F has been derived in [22] for the case of natural δ.
Based on the above corollary, all themembers of the family (11) are discriminated between each other
by means of the expected value EZ {ln f (F−1(1 − e−Z ))}, which depends on the ‘‘parent’’ distribution
F of the model. Hence, in a manner similar to the Jones’ family, the term EZ {ln f (F−1(1 − e−Z ))},
where Z has gamma distribution G(δ, 1) with density 1

0(δ)
e−zzδ−1, z > 0, now plays the key role

in discriminating between the members of the family (11). Section 5 concentrates on some specific
problems in this direction, and in particular to the derivation of a statistical test for discriminating
between members of the family g(G)F .
It is possible, in some cases, to obtain an analytic form for the expected value of Part (b) of Lemma3,

as shown in the following examples. The same is also true for the moments Eg(G)F
[Xν] of g(G)F , which

are given by (12).

Example 8. Suppose that the parent distribution is uniform in the interval (0, θ), θ > 0. Then,
f (x) = 1/θ , 0 < x < θ , and F(x) = x/θ . In this case, g(G)F is the gamma density generated by the
uniform distribution, with density function

g(G)F (x; δ, θ) =
1

θ0(δ)
{− ln(1− (x/θ))}δ−1, x ∈ R, δ, θ > 0.

It can be easily shown that for Z , a gamma random variable with density 1
0(δ)
e−zzδ−1, z > 0,

EZ {ln f (F−1(1− e−Z ))} = − ln θ.
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This formula can be used to obtain the Shannon entropy by an application of Corollary 2. Themoments
of the above density g(G)F are given by

Eg(G)F
[Xν] = θ ν

ν∑
r=0

(ν
r

) (−1)r

(1+ r)δ
, ν = 1, 2, . . . ,

for the case of natural δ > 1. N

Example 9. Consider the gamma-exponential distribution with density

g(G)F (x; δ, λ) =
λδ

0(δ)
xδ−1e−λx, x ∈ R,

for δ, λ > 0. It is simply the gamma distribution with shape parameter δ and scale parameter λ. This
is obtained from (11) if the parent density f and the parent distribution function F are those of the
exponential distribution with parameter λ > 0. In this case, f (x) = λe−λx and F(x) = 1−e−λx, x > 0.
Simple algebraic manipulations then lead to

EZ {ln f (F−1(1− e−Z ))} = ln λ− δ,

for Z , a gamma random variable. This formula and Corollary 2 can be used to obtain the Shannon
entropy of the gamma-exponential distribution. Themoments of the gamma-exponential distribution
g(G)F are given by

Eg(G)F
[Xν] =

0(ν + δ)

λν0(δ)
, ν = 1, 2, . . . . N

Example 10. The gamma-Pareto distribution is obtained from (11) for f (x) = kθk

xk+1
, x ≥ θ > 0, and

F(x) = 1−
(
θ
x

)k
, k > 0, and has density as

g(G)F (x; δ, k, θ) =
(−1)δ−1kδθ k

0(δ)xk+1

(
ln
θ

x

)δ−1
, x ∈ R,

for δ, k, θ > 0. Algebraic manipulation then leads to

EZ {ln f (F−1(1− e−Z ))} = ln
k
θ
−
k+ 1
k

δ,

which can be used to obtain the Shannon entropy of the gamma-Pareto distribution. Based on (12),
the moments of this distribution are

Eg(G)F
[Xν] = θ ν

(
k

k− ν

)δ
, for ν = 1, 2, . . . . N

Example 11. Consider the power function distribution with density and distribution function as
f (x) = kθ kxk−1, 0 < x < 1/θ , and F(x) = (θx)k, for k > 0. Then, the gamma density generated
by the power function distribution is

g(G)F (x; δ, k, θ) =
kθ k

0(δ)
xk−1

{
− ln

(
1− (θx)k

)}δ−1
, x ∈ R, δ, k, θ > 0.

Moreover, by using the transformation y = e−z , z > 0, we obtain

EZ {ln f (F−1(1− e−Z ))} = ln(kθ)+
(−1)δ−1(k− 1)

k0(δ)

∫ 1

0
(ln y)δ−1 ln(1− y)dy.
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Taking into account that− ln(1− y) = y+ (y2/2)+ (y3/3)+· · ·, for 0 < y < 1, after some algebraic
manipulations, we obtain for a natural δ > 1 that

EZ {ln f (F−1(1− e−Z ))} = ln(kθ)−
k− 1
k

∞∑
m=1

1
m(m+ 1)δ

.

This expected value also helps to derive, by means of Corollary 2, the Shannon entropy of the gamma
density generated by the power function distribution. For a natural δ > 1 and ν/k a natural number,
the moments of g(G)F are given by

Eg(G)F
[Xν] =

1
θ ν

ν/k∑
r=0

(
ν/k
r

)
(−1)r

(1+ r)δ
, ν = 1, 2, . . . . N

Example 12. Consider the gamma-logistic distribution with density

g(G)F (x; δ, η) =
1

0(δ)

{
− ln

e−ηx

1+ e−ηx

}δ−1
ηe−ηx

(1+ e−ηx)2
, x ∈ R,

for δ, η > 0. This is obtained from (11) if the parent density f and the parent distribution function F are
that of the logistic distribution with parameter η > 0. In this case f (x) = ηe−ηx

(1+e−ηx)2
and F(x) = 1

1+e−ηx

for x ∈ R, η > 0, respectively. Algebraic manipulations then lead to

EZ {ln f (F−1(1− e−Z ))} = ln η − δ −
∞∑
m=1

1
m(m+ 1)δ

if δ > 1 is a natural number. Based on (12), the moments of the gamma-logistic distribution are

Eg(G)F
[Xν] =

(−1)ν+δ−1

ην0(δ)

∫ 1

0
(ln((1− y)/y)ν(ln(1− y))δ−1dy,

and they cannot be simplified any further. N

Example 13. The gamma-half-logistic distribution is obtained from (11) for f (x) = 2e−x

(1+e−x)2
, x > 0,

and F(x) = 1−e−x
1+e−x , x > 0, and has density function as

g(G)F (x; δ) =
1

0(δ)

{
− ln

2e−x

1+ e−x

}δ−1 2e−x

(1+ e−x)2
, x ∈ R,

and δ > 0. If δ > 0 is a natural number, then

EZ {ln f (F−1(1− e−Z ))} = ln(1/2)− δ +
∞∑
m=1

m∑
r=0

(m
r

) (−1)m+r+1
m(1+ r)δ

,

which can be used to obtain the Shannon entropy of the gamma-half-logistic distribution, in view of
Corollary 2. Based on (12), the moments of this distribution are

Eg(G)F
[Xν] =

(−1)δ−1

0(δ)

∫ 1

0
[ln((1+ y)/(1− y))]ν(ln(1− y))δ−1dy,

and they cannot be simplified any further. N

Example 14. The final example concentrates on the gamma-Weibull distribution with density

g(G)F (x; δ, θ, c) =
c

θ0(δ)

( x
θ

)cδ−1
e−(x/θ)

c
, x ∈ R,



K. Zografos, N. Balakrishnan / Statistical Methodology 6 (2009) 344–362 355

δ, c, θ > 0, which is obtained from (11) with parent density and distribution functions f (x) =
c
θc x

c−1e−(x/θ)
c
, x > 0 and F(x) = 1− e−(x/θ)

c
, for c, θ > 0. For this distribution, we have

EZ {ln f (F−1(1− e−Z ))} = ln
c
θ
− δ +

c − 1
c

Ψ (δ).

The moments of the gamma-Weibull distribution are

Eg(G)F
[Xν] =

θ ν

0(δ)
0

(ν
c
+ δ

)
, ν = 1, 2, . . . .

The above formulas for Eg(S)F
[Xν], ν = 1, 2, . . . , can be used to obtain the first four moments of all

these distributions, thereby giving formulas for the skewness and kurtosis of the gamma-generated
densities. N

4. An alternative method of moments

An alternative method of moments will be developed in this section for the estimation of the
parameters of the beta and gamma families of skewed distributions which are generated by a
parametric parent distribution F . For this purpose, let us suppose that the parent distribution function
F of the skewed models (1) and (11) involves a p-dimensional real parameter θ . We will denote by Fθ
the parent distribution and by g(B)Fθ and g

(G)
Fθ
the respective families (1) and (11). In order to estimate

the parameters θ by using themethod ofmoments, it is necessary to have themoments of g(B)Fθ and g
(G)
Fθ

in a closed form. It is hard in general to obtain in an analytic form the central moments Eg(B)Fθ
(Xν) and

Eg(G)Fθ
(Xν), ν = 1, 2, . . ., and is in fact impossible in most of the cases. On the other hand, we observe

in Lemmas 1 and 3 that we can obtain a simple analytic form for the expected values of some suitable
functions of the parent distribution Fθ . This fact motivates us to look at the analytic forms of powers
of suitable functions of the parent distribution Fθ . These expected values, with respect to g

(B)
Fθ
and g(G)Fθ ,

are stated below in Lemmas 4 and 5.

Lemma 4. For ν = 1, 2, . . .,
(a) Eg(B)Fθ

[(Fθ (X))ν] =
0(α+ν)0(α+β)

0(α)0(α+β+ν)
,

(b) Eg(B)Fθ
[(ln Fθ (X))ν] = 1

B(α,β)
dν
dαν B(α, β),

(c) Eg(B)Fθ
[(1− Fθ (X))ν] =

0(α+β)0(β+ν)

0(β)0(α+β+ν)
,

(d) Eg(B)Fθ
[(ln(1− Fθ (X)))ν] = 1

B(α,β)
dν
dβν B(α, β).

The lemma can be proved easily by using the transformation y = Fθ (x), and is therefore omitted.
This lemma is essential for developing an alternative method of moments for estimating the

parameter θ of the family g(B)Fθ . In this context, consider a random sample X1, X2, . . . , Xn from g
(B)
Fθ

with parent distribution Fθ . Suppose, without any loss of generality, that the parameters α and β of
g(B)Fθ given by (1), are known. Then, instead of using the sample version of the moments Eg(B)Fθ

(Xν) to

estimate the parameter θ , we can use in a similar manner the sample versions of the expected values
in the above lemma. In this direction, the estimator of the p-dimensional parameter θ , denoted by
θ̂AME , can be obtained as the solution of the system of equations

1
n

n∑
i=1

[Fθ (Xi)]ν =
0(α + ν)0(α + β)

0(α)0(α + β + ν)
, for ν = 1, . . . , p.

Similarly, solution of the system of equations

1
n

n∑
i=1

[(ln(1− Fθ (Xi)))ν] =
1

B(α, β)
dν

dβν
B(α, β), for ν = 1, . . . , p, (13)
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may be used for estimation purpose as well. Observe that the above lemma gives a great flexibility to
construct suitable equations depending on the specific form of the parent distribution Fθ .

Example 15. As a first example, suppose that the parent distribution is uniform in the interval (0, θ),
with cdf F(x) = x/θ for 0 < x < θ . In this case, the beta density generated by the uniform distribution
is given by

1
B(α, β)

1
θ

( x
θ

)α−1 (
1−

x
θ

)β−1
, x ∈ R, α, β > 0.

In order to obtain the alternative moment estimator θ̂AME of θ , let us consider the equation
1
n

∑n
i=1[Fθ (Xi)]

ν
=

0(α+ν)0(α+β)

0(α)0(α+β+ν)
for ν = 1, since θ is univariate. Then,

1
n

n∑
i=1

Fθ (Xi) =
X
θ
,

and the alternative moment estimator θ̂AME is

θ̂AME = X
0(α)0(α + β + 1)
0(α + 1)0(α + β)

.

It can be easily shown that the likelihood equation is

−
n(α + β − 1)

θ
+ (β − 1)

n∑
i=1

1
θ − xi

= 0,

which does not lead to an analytic form for the maximum likelihood estimator of θ . N

Example 16. Consider the beta-exponential distribution obtained from the parent distribution
Fθ (X) = 1 − e−θx, θ > 0. It seems appropriate to use, in this case, Eq. (13), with ν = 1, because
the parameter θ is univariate. We then have

1
n

n∑
i=1

[ln(1− Fθ (Xi))] = −θX .

Moreover, 1
B(α,β)

d
dβ B(α, β) = Ψ (β)− Ψ (α + β). Hence, by using Eq. (13), with ν = 1, we obtain

θ̂AME =
1

X
[Ψ (α + β)− Ψ (β)].

Based on the results of Nadarajah and Kotz [5], θ̂AME coincideswith themaximum likelihood estimator
and the classic moment estimator of θ . N

Example 17. The parent distribution of the beta Pareto is Fθ (X) = 1−
(
θ
x

)k, θ > 0, k > 0. Based once
again on Eq. (13) and taking into account that

1
B(α, β)

d
dβ
B(α, β) = Ψ (β)− Ψ (α + β),

1
B(α, β)

d2

dβ2
B(α, β) = [Ψ (β)− Ψ (α + β)]2 + Ψ ′(β)− Ψ ′(α + β),

the alternativemoment estimators θ̂AME and k̂AME of the parameters θ and k, respectively, are obtained
as the solution of the system of equations

k ln θ −
1
n

n∑
i=1

ln Xi = Ψ (β)− Ψ (α + β),
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1
n

n∑
i=1

k2(ln θ − ln Xi)2 = [Ψ (β)− Ψ (α + β)]2 + Ψ ′(β)− Ψ ′(α + β).

The respective likelihood equations for the parameters θ and k of the beta-Pareto distribution are

nkβ
θ
− k(α − 1)θ k−1

n∑
i=1

1
xki − θ k

= 0,

n
k
+ nβ ln θ − β

n∑
i=1

ln xi − (α − 1)θ k
n∑
i=1

ln θ − ln xi
xki − θ k

= 0.

The equations that lead to the alternative moment estimators of the parameters are simpler than the
corresponding likelihood equations. N

Example 18. In a similar manner, the system of equations which leads to the alternative moment
estimators θ̂AME and ĉ AME of the parameters θ and c of the beta-Weibull distribution with parent
distribution Fθ (x) = 1− e−(x/θ)

c
, for c, θ > 0, are

1
nθ c

n∑
i=1

ln X ci = Ψ (α + β)− Ψ (β),

1
nθ2c

n∑
i=1

ln X2ci [Ψ (β)− Ψ (α + β)]
2
+ Ψ ′(β)− Ψ ′(α + β).

It should be noted that the classical method of moments is not applicable in this case since the
moments of the beta-Weibull distribution are, in general, not available in a closed form; see [7]. N

Let us now focus on the gamma skewed density g(G)Fθ generated by the parametric parent

distribution Fθ . An alternative method of moments can be developed in a similar manner for g
(G)
Fθ
.

The next lemma is key for this method of estimation.

Lemma 5. For ν = 1, 2, . . .,

(a) Eg(G)Fθ
[(Fθ (X))ν] =

∑ν
r=0

(
ν

r

)
(−1)r

(1+r)δ for a natural δ > 1,

(b) Eg(G)Fθ
[(ln Fθ (X))ν] = (−1)δ−1

0(δ)
∂ν+δ−1

∂αν∂βδ−1
B(α, β)

∣∣∣
α=β=1

for a natural δ > 1,

(c) Eg(G)Fθ
[(1− Fθ (X))ν] = 1

(ν+1)δ
for a natural δ > 1,

(d) Eg(G)Fθ
[(ln(1− Fθ (X)))ν] = (−1)ν

0(δ)
0(ν + δ) for a natural δ > 0.

Proof. The lemma is proved by using suitable transformations. We will outline the proof for Parts (b)
and (d). First, for the proof of Part (b), using the transformation y = Fθ (x), we get

Eg(G)Fθ
[(ln Fθ (X))ν] =

(−1)δ−1

0(δ)

∫ 1

0
(ln y)ν((ln(1− y))δ−1dy.

For a natural δ > 1 and B(α, β) =
∫ 1
0 y

α−1(1− y)β−1dy, it is easy to see that the last integral is equal

to ∂ν+δ−1

∂αν∂βδ−1
B(α, β)

∣∣∣
α=β=1

, which completes the proof of Part (b). For the proof of Part (d), we first use

the transformation y = Fθ (x) and then the transformation z = − ln(1− y), to obtain

Eg(G)Fθ
[(ln(1− Fθ (X)))ν] =

(−1)ν

0(δ)

∫
∞

0
z(ν+δ)−1e−zdz,

which completes the proof. N
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In order to present the alternative method of moments for g(G)Fθ , consider a random sample

X1, X2, . . . , Xn from g
(G)
Fθ
with parent distribution Fθ . Suppose the parameter δ of g

(G)
Fθ
, given by (11),

is known. Then, based on the above lemma, an alternative moment estimator of the m-dimensional
parameter θ , denoted by θ̂AME , can be obtained as the solution of the system of equations

1
n

n∑
i=1

[(1− Fθ (Xi))ν] =
1

(ν + 1)δ
, for ν = 1, . . . ,m.

All other cases of Lemma 5 can be used in a similar manner.

Example 19. Let the parent distribution Fθ be uniform in the interval (0, θ), θ > 0. Then, Fθ (x) =
x/θ and the alternative moment estimator θ̂AME of θ , is obtained as the solution of the equation
1
n

∑n
i=1 Fθ (Xi) =

∑1
r=0

(
1
r

)
(−1)r

(1+r)δ , which is given by

θ̂AME = X
2δ

2δ − 1
.

This alternative moment estimator coincides with the classical moment estimator of the gamma-
uniform distribution since the first moment of this distribution is θ

(
1− 1

2δ

)
. If the parameter δ is

also unknown, then the alternative moment estimators of θ and δ can be obtained as the solution of
the equations

θ = X
2δ

2δ − 1
and

1
n

n∑
i=1

X2i
θ2
= 1−

1
2δ−1
+
1
3δ
. N

Example 20. Consider the gamma-exponential distribution. In this case, the parent distribution is the
exponential distribution Fθ (X) = 1 − e−θx, θ > 0. Then, using Part (d) of Lemma 5, the alternative
moment estimator θ̂AME of θ is obtained as the solution of the equation 1n

∑n
i=1 ln(1 − Fθ (Xi)) =

(−1)
0(δ)

0(δ + 1), which yields

θ̂AME =
δ

X
.

This coincides with the moment estimator of θ . Taking into account that the gamma-exponential
distribution is the gamma distribution G(δ, 1

θ
), we conclude that θ̂AME = δ/X coincides also with

the maximum likelihood estimator of θ . If the parameter δ of the gamma-exponential distribution is
also unknown, then the alternative moment estimators of θ and δ are given by

θ̂AME =
δ̂AME

X
and δ̂AME =

(
1

nX
2

n∑
i=1

X2i − 1

)−1
.

Note that in the gamma-exponential distribution, the maximum likelihood estimator of δ is not
available in a closed form. N

Example 21. Let the parent distribution be Pareto. In this case, the distribution function is Fθ (x) =
1 − (θ/x)k, which involves two parameters θ and k. Using again Part (d) of Lemma 5, the alternative
moment estimators of the parameters θ and k can be obtained as the solution of the system of
equations

k ln θ −
k
n

n∑
i=1

ln Xi = −δ,

1
n

n∑
i=1

k2(ln Xi − ln θ)2 = δ(δ + 1).
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The likelihood equations leading to the maximum likelihood estimators of θ and k are

k ln θ −
k
n

n∑
i=1

ln Xi = −δ,

nk
θ
+ (δ − 1)

n∑
i=1

1
θ(ln θ − ln Xi)

= 0. N

Example 22. Now consider the gamma-Weibull distribution with distribution function F(x) = 1 −
e−(x/θ)

c
for c, θ > 0. For known δ, the alternative moment estimators of c and θ are obtained as the

solution of the system of equations

1
nθ c

n∑
i=1

X ci = δ,

1
nθ2c

n∑
i=1

X2ci = δ(δ + 1). N

5. Discriminating between members of beta and gamma distributions generated by the
distribution F

The problem of testing whether some given observations can be considered as coming from one of
two probability distributions is an old problem in statistics; see [23] and the references contained
therein. In this framework, consider a random sample X1, X2, . . . , Xn of size n from the family of
Jones’ distributions with density (1). Our interest is to identify the specific model of (1) that is most
appropriate to describe the data X1, X2, . . . , Xn. We therefore need a way to discriminate between the
models of the family in (1). In the spirit of themaximumentropyprinciple, themost appropriatemodel
to describe X1, X2, . . . , Xn is the model with ‘‘parent’’ distribution function F with the corresponding
Shannon entropy HSh(g

(B)
F ) as large as possible. Hence, between two candidate ‘‘parent’’ models F1

and F2, with respective densities f1 and f2, we have to decide in favour of one of them on the basis of
the differenceHSh(g

(B)
F1
)−HSh(g

(B)
F2
).

It is easy to see, in view of Corollary 1, that

D
(B)
1,2 , HSh(g

(B)
F1
)−HSh(g

(B)
F2
) = EY

{
ln
f2
(
F−12 (Y )

)
f1
(
F−11 (Y )

)} , (14)

with Y ∼ Beta(α, β), and if we will use the respective quantile density functions qi(u) =
1/fi

(
F−1i (u)

)
, i = 1, 2 and 0 < u < 1, an equivalent form is given by

D
(B)
1,2 = HSh(g

(B)
F1
)−HSh(g

(B)
F2
) = EY

{
ln
q1 (Y )
q2 (Y )

}
, with Y ∼ Beta(α, β). (15)

Large values ofD (B)
1,2 support the ‘‘parent’’ model F1, while small values ofD

(B)
1,2 are in favour of F2.

The differenceD
(B)
1,2 can be estimated as follows. Using the random sample X1, X2, . . . , Xn, we can

obtain the random samples Y (j)1 , Y
(j)
2 , . . . , Y

(j)
n , with Y

(j)
i = Fj(Xi), i = 1, . . . , n, and Fj a ‘‘parent’’model,

for j = 1, 2. Then, based on Lemma 2, Y (j)1 , Y
(j)
2 , . . . , Y

(j)
n , j = 1, 2, is a random sample from a beta

distribution Beta(α, β)with parameters α, β . Based on (14) and (15), the sample analogs ofD (B)
1,2 are

D̂
(B)
1,2 =

1
n

n∑
i=1

ln
f2
(
F−12 (Y (2)i )

)
f1
(
F−11 (Y (1)i )

) (16)



360 K. Zografos, N. Balakrishnan / Statistical Methodology 6 (2009) 344–362

and

D̂
(B)
1,2 =

1
n

n∑
i=1

ln
q1
(
Y (1)i

)
q2
(
Y (2)i

) . (17)

This procedure can be used effectively to discriminate between twomembers of (1) that are based on
‘‘parent’’ distributions F1 and F2. In this context, in order to decide between

H0 : ‘‘parent’’ distribution is F2 and H1 : ‘‘parent’’ distribution is F1,

we can exploit the statistic D̂
(B)
1,2 and the null hypothesis is rejected at a level a if

D̂
(B)
1,2 ≥ da,

where da is the upper 100× a% point of the distribution of D̂
(B)
1,2 , under the null hypothesis H0.

A similar formulation can be stated for the discrimination between members of gamma family in
(11). Between two candidate ‘‘parent’’ models F1 and F2, with respective densities f1 and f2, we have
to decide in favour of one of them on the basis of the differenceHSh(g

(G)
F1
)−HSh(g

(G)
F2
), which can be

easily expressed, through Corollary 2, as

D
(G)
1,2 , HSh(g

(G)
F1
)−HSh(g

(G)
F2
) = EZ

{
ln
f2(F−12 (1− e−Z ))

f1
(
F−11 (1− e−Z )

)} , (18)

with Z being a gamma random variable with density 1
0(δ)
e−zzδ−1, z > 0.

An equivalent expression of (18) is given by

D
(G)
1,2 = HSh(g

(G)
F1
)−HSh(g

(G)
F2
) = EZ

{
ln
q1(1− e−Z )
q2(1− e−Z )

}
, (19)

with q1 and q2 being the corresponding quantile densities.
The differenceD

(G)
1,2 can be estimated as follows. Using the randomsampleX1, X2, . . . , Xn from (11),

we can obtain the random samples Z (j)1 , Z
(j)
2 , . . . , Z

(j)
n with Z

(j)
i = − ln[1 − Fj(Xi)], i = 1, . . . , n, and

Fj a ‘‘parent’’ model, for j = 1, 2. Then, Z
(j)
1 , Z

(j)
2 , . . . , Z

(j)
n , j = 1, 2, is a random sample from a gamma

distribution with density 1
0(δ)
e−zzδ−1, z > 0. Based on (18) and (19), the sample analogs ofD (G)

1,2 are

D̂
(G)
1,2 =

1
n

n∑
i=1

ln
f2
(
F−12 (1− e−Z

(2)
i )
)

f1
(
F−11 (1− e−Z

(1)
i )
) (20)

and

D̂
(G)
1,2 =

1
n

n∑
i=1

ln
q1
(
1− e−Z

(1)
i

)
q2
(
1− e−Z

(2)
i

) . (21)

This formulation can be also used, as before, with the use of D̂
(B)
1,2 to discriminate between two

members of (11) that are based on ‘‘parent’’ models F1 and F2.
The next examples give in a closed form the differences D

(B)
1,2 and D

(G)
1,2 for specific parent

distributions F1 and F2.

Example 23. Consider the beta-exponential distribution and the beta-Weibull distribution with
parent densities f1(x) = (1/λ)e−x/λ, x > 0, λ > 0, and f2(x) = c

θc x
c−1e−(x/θ)

c
, x > 0 and c, θ > 0.

Then, by using (14), we have

D
(B)
1,2 = ln c − ln λ− ln θ +

c − 1
c
EY [ln(− ln(1− Y ))], with Y ∼ Beta(α, β), N



K. Zografos, N. Balakrishnan / Statistical Methodology 6 (2009) 344–362 361

Example 24. In a similar manner, if we consider the gamma-uniform and the gamma-Pareto
distributions with parent densities f1(x) = 1/µ, 0 < x < µ, and f2(x) = kθ k/xk+1, x ≥ θ > 0,
respectively, then use of (18) gives

D
(G)
1,2 = ln

k
θ
−
k+ 1
k

δ + lnµ. N

Remark 4. The procedure for discrimination, introduced in this section, can be extended to the
case of more than two, say r ≥ 2, ‘‘parent’’ models. In this framework, consider a random sample
X1, X2, . . . , Xn from (1) and suppose the ‘‘parent’’ distribution F and density f are unknown, but it
is known that they belong to the sets of ‘‘parent’’ distributions {F1, . . . , Fr} and densities {f1, . . . , fr},
respectively. Based on X1, X2, . . . , Xn, it is easy to create random samples Y

(j)
i = Fj(Xi), i = 1, . . . , n

and j = 1, . . . , r . To each pair of ‘‘parent’’ models Fj and fj, there corresponds the expected
value EY [ln fj(F−1j (Y ))], j = 1, . . . , r , where Y ∼ Beta(α, β), and its sample analog T̂

(B)
j =

1
n

∑n
i=1 ln fj(F

−1
j (Y (j)i )), j = 1, . . . , r . Based on the above discussion, it is then reasonable to choose

the ‘‘parent’’ models Fk and fk such that T̂
(B)
k = min1≤j≤r T̂

(B)
j . Exactly the same procedure can also

be followed for discriminating between r ≥ 2 models obtained from (11) for different ‘‘parent’’
distributions Fj and densities fj, j = 1, . . . , r .

Remark 5. Another interesting problem is to consider the parent density and distribution functions
f and F fixed and to focus on the discrimination between two members of (1) or (11) on the basis
of the beta parameters α and β , or the gamma parameter δ. That is the case when we are interested
in discriminating between the distributions of two order statistics or between two record densities.
The procedures proposed in the papers by Kundu and Gupta can possibly be adopted to study this
problem.

Remark 6. A parallel problem is the problem of discrimination between beta-generated and gamma-
generated distributions. For this case, we need to decide if a random sample X1, X2, . . . , Xn is coming
from either g(B)F or g(G)F . In this regard, we can use for the discrimination between g

(B)
F and g(G)F the

Kullback–Leibler divergence

D0
(
g(G)F , g(B)F

)
=

∫
+∞

−∞

g(G)F (x) ln
g(G)F (x)

g(B)F (x)
dx = −HSh(g

(G)
F )−

∫
+∞

−∞

g(G)F (x) ln g(B)F (x)dx.

It is the only member of the phi-divergence which can be obtained in a closed form for g(B)F and g
(G)
F ,

defined by (1) and (11), respectively. It can be shown, in view of Corollary 2, Lemmas 3 and 5, that

D0
(
g(G)F , g(B)F

)
= − ln0(δ)+ (δ − 1)Ψ (δ)+ ln B(α, β)+ (β − 1)δ

+ (α − 1)
∞∑
m=1

1
m(m+ 1)δ

.

Observe that D0
(
g(G)F , g(B)F

)
does not depend on the parent distribution F . It is intuitively clear

because g(B)F and g(G)F are based on the same parent F . The right-hand side of the above equation is
the explicit form of the Kullback–Leibler divergence between the density of an order statistic and the
density of an upper record.
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