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In this paper, the stress analysis of moderately thick functionally graded sector plate is
developed for studying the singularities in vicinity of the vertex and effects of boundary
layer. Based on the first-order shear deformation plate theory, the governing partial differ-
ential equations are obtained. Using an analytical method, the stretching and bending equi-
librium equations are decoupled. Also, introducing a function, called boundary layer
function, the three bending equations are converted into two decoupled equations. These
equations are solved analytically and the effects of boundary layer function on stress com-
ponents are shown. Also, the singularities of shear force, moment resultants and boundary
layer function are discussed for both salient ða 6 180Þ and re-entrant ða > 180Þ sectorial
plates. In order to verify the accuracy of the results, the governing equations are also solved
using differential quadrature method (DQM). By comparing the results of exact method
with DQM, a good agreement can be seen.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The sector plates are widely used in engineering problems. The analysis of the sector plates, because of existence a sharp
corner on the vertex of sector plate, is encountered some singularities in the moment and shear force resultants. According to
the classical thin plate theory, William [1,2] studied corner stress singularities resulting from various boundary conditions in
isotropic plates under bending and extension. Dempsey and Sinclair [3] re-examined the stress singularities in isotropic
plates under extension by introducing an Airy stress function. Ojikutu et al. [4] used a finite difference scheme to study
the stress singularities in laminated composite plates with simply supported radial edges. Leissa et al. [5,6] used the Ritz
method and introduced the so-called corner functions as the admissible functions to study the singular behavior for free
vibration of thin sectorial plates with re-entrant corners or V-notches. Huang et al. [7] found the closed form solution for
the vibration of a sector plate with simply supported radial edges to study the corner stress singularities. They used the
first-order shear deformation plate theory to study thick plates by considering a shear correction factor. Burton and Sinclair
[8] introduced a stress potential by investigating Williams-type corner stress singularities for isotropic thick plates due to six
different combinations of homogeneous boundary conditions around a corner, but the singularities of the shear forces were
not represented in their solution. Huang et al. [9] studied the corner stress singularities by using a closed-form solution for
the vibration of a Mindlin sector plate with simply supported radial edges. Huang [10] investigated corner stress singularities
and obtained the orders of moment and shear force singularities. Kotousov and Lew [11] studied the corner stress singular-
ities for a sector plate within the first-order plate theory by using stress resultant and displacement functions and adapting
. All rights reserved.
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the eigenfunction expansion approach of Williams. The stress singularities are investigated based on the three-dimensional
elasticity theories in many papers. Hartranft [12] used eigenfunction expansion to study three-dimensional crack problems.
Xie and Chaudhuri [13] investigated the stress singularity at a biomaterial interface crack front by using three-dimensional
elasticity theories. Huang [14] obtained the orders of Williams-type stress singularities under various boundary conditions
around a corner by using Lo’s high-order plate theory.

The mentioned papers investigate the stress singularities in isotropic, non-isotropic and bi-material plates. The function-
ally graded materials (FGMs) are composite materials that are used in aerospace, nuclear and other engineering applications.
In these materials, the mechanical properties vary along one or more directions, usually along the thickness direction, con-
tinuously. Due to this wide applicability, the bending analysis of the FGM plates can be important. Zenkour [15] investigated
the bending analysis of FGM plates based on generalized shear deformation theory. Huang and Chang [16] studied the stress
singularities for an FGM plate by using the classical thin plate theory.

The usual changes of different parameters in the vicinity of the edges of plates are known as boundary layer phenomenon.
The cause of this effect is the existence of the boundary layer function. This function has a significant value in the near of the
edges and it is zero in interior zone. The boundary layer was first introduced by Reissner [17,18]. Nossier and Reddy [19]
investigated the boundary layer and the transverse displacement in the bending of symmetric laminated plates made of
transversely isotropic layer by uncoupling the bending equations into two equations. Nosier et al. [20] used the boundary
layer to study two opposite simply supported edges in Mindlin rectangular plates under bending. Jomehzadeh and Saidi
[21] investigated the free vibration of transversely isotropic sector plates by using the boundary layer function. Jomehzadeh
et al. [22] used an exact analytical solution for bending analysis of functionally graded annular sector plates and investigated
the effects of power of FGM, the geometrical characteristics and boundary conditions on the deflection and stresses of the FG
sector plates. Recently, Atashipour et al. [23] studied the boundary layer phenomenon in third-order shear deformation the-
ory for bending of isotropic annular sector plates.

In this paper, the five highly coupled partial differential equations of FG sector plate under static loading are decoupled
using the boundary layer function. Also, analytical solutions are obtained for stress analysis of FG sector plates with various
boundary conditions. The boundary layer function and its effect on the stresses of the FG plate are studied numerically. The
effects of plate thickness, boundary conditions and power of functionally graded material are investigated. Since the effect of
boundary layer function for FG plates is similar to isotropic and composite plates, this function seems to be material inde-
pendent. Also, the singularities of the force and moment resultants in vicinity of vertex are discussed in details.

2. Governing equations

Based on the first-order shear deformation plate theory, the displacement field of a sector plate is expressed as:
Uðr; h; zÞ ¼ uðr; hÞ þ zwrðr; hÞ; ð1aÞ
Vðr; h; zÞ ¼ vðr; hÞ þ zwhðr; hÞ; ð1bÞ
Wðr; h; zÞ ¼ wðr; hÞ; ð1cÞ
where u; v and w are the displacement components of the mid-plane in r; h and z directions, respectively. wr and wh denote
the rotation functions of the transverse normal about h- and r-axis, respectively.

Using the principle of stationary total potential energy, the governing equations as well as the related boundary condi-
tions along the edges of a functionally graded sector plate can be obtained. The governing equations are [22]
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and the boundary conditions are defined as
du ¼ 0 : Nrnr þ Nrhnh ¼ 0;
dv ¼ 0 : Nrhnr þ Nhnh ¼ 0;
dwr ¼ 0 : Mrnr þMrhnh ¼ 0;
dwh ¼ 0 : Mrhnr þMhnh ¼ 0;
dw ¼ 0 : Q rnr þ Q hnh ¼ 0;

ð3Þ
where K2 is the shear correction factor which in the present study is assumed to be 5/6.
Also the integration coefficients are defined as
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where Eðz; TÞ is the Young modulus of the FG sector plate which is assumed to be temperature dependent and to vary along
the thickness direction based on a power law function as
Eðz; TÞ ¼ Ec þ ðEc � EmÞðz=h� 1=2Þn; ð5Þ
where subscripts c and m are related to ceramic and metal, respectively. Also, n is the power of functionally graded material.
The Young modulus of the ceramic and metal can be defined as a function of the temperature as follows [24]:
E ¼ E0ðE�1T�1 þ 1þ E1T þ E2T2 þ E3T3Þ; ð6Þ
where E0; E�1; E1; E2 and E3 are the temperature coefficients which are given in Table 1.
Mr ; Mh and Mrh are the moment resultants which are defined as
Mr ¼
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perature coefficients of the ceramic and metal young modulus ðE � 109Þ, Ref [25].

rial E0 E�1 E1 E2 E3

04 201.04 0 3.079e�4 �6.534e�7 0
4 348.43 0 �3.070e�4 2.160e�7 �8.946e�11
Al–4V 122.56 0 �4.586e�4 0 0
inum oxide 349.55 0 �3.853e�4 4.027e�7 �1.673e�10
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Also Nr ; Nh and Nrh are the in-plane force resultants as
Nr ¼
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And the shear force resultants Qr and Q h are as follows:
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where rr ; rh; rrh and rrz are stress components.
The five highly coupled partial differential equations (2) can be rewritten as
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is the two-dimensional Laplace operator in polar coordinate. Also, the functions
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Applying some algebraic operations, the governing equations (10) can be converted into four equations as
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where D
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¼ D11 � B2
11=A11 is the flexural rigidity of the FG plate. Also, A
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are A33 and D33 � B11B33=A11, respectively.
The rotation functions wr and wh can be derived easily as follows:
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Also, the force and moment resultants can be obtained in terms of transverse deflection w and the function u4. It will be
shown that the function u4 has a boundary layer behavior. Thus, like the homogeneous plates [19], this function will be
known as the boundary layer function.
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3. Solution

It is assumed that the FG sector plate with radius a and sector angle a is simply supported along two radial edges and
carrying out the uniform distributed load P0 (Fig. 1). The transverse displacement, the boundary layer function u4 and
the transverse load can be expanded in their series solution as
w ¼
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Substituting Eq. (14) into the two decoupled equations (12a) and (12b) and solving the resulting ordinary differential equa-
tions, the transverse displacement for bm – 2;4 and the function um are obtained as
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It can be seen that Eqs. (12c) and (12d) are exactly satisfied by assuming the in-plane displacements as
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These relations are valid for some types of boundary conditions as can be seen afterward. Also, substituting Eqs. (16) into Eqs.
(13) the rotation functions can be obtained as
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Fig. 1. The geometry of the sector plate.
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To determine the six unknown coefficients ðCim; i ¼ 1; . . . ;6Þ, the regularity conditions at r ¼ 0 and the boundary conditions
at r ¼ a should be applied. Five regularly conditions at r ¼ 0 can be considered as
w ¼ 0; ð20aÞ
u ¼ finite; ð20bÞ
v ¼ finite; ð20cÞ
wr ¼ finite; ð20dÞ
wh ¼ finite: ð20eÞ
Based on the relation (18), it can be seen that satisfying the regularity conditions (20d) and (20e) is equivalent to (20b) and
(20c). Therefore, it is sufficient to apply only the conditions (20a), (20d) and (20e). In order to satisfy Eq. (20a), it can be con-
cluded that since the value of bm is larger than zero, the coefficient C2m should be vanished, namely
C2m ¼ 0: ð21Þ
The modified Bessel function of the first kind can be expanded in term of its power series as follow:
Ibm
ðlrÞ ¼

X1
k¼0

lr
2

� �bmþ2k

k!Cðkþ bm þ 1Þ ; ð22Þ
where C is the gamma function. Also, the modified Bessel function of the second kind can be expressed in term of the first
kind as
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Upon substituting Eqs. (22) and (23) into Eqs. (19), the rotation functions wr and wh are obtained in terms of power series as
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In order to satisfy the regularity condition (20d) as r approaches zero, it is convenient to divide the bm into two intervals
0 < bm < 1 and bm P 1.

While 0 < bm < 1, some terms of the limit containing r�bm�1 and rbm�1 in Eq. (24a) do not vanish for k ¼ 0. To satisfy Eq.
(24a), the coefficients of these terms should be equal to zero as follows:
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Using Eqs. (25) and (21), the coefficients C4m and C6m can be obtained in terms of C1m; C3m and C5m as
C6m ¼ �C3m
8 D
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; ð26aÞ
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Also, the coefficients C1m; C3m and C5m are obtained by applying the boundary equations at r ¼ a.
When bm > 1, the terms contain r�bm�1 and r1�bm in Eq. (24a) are infinite. Therefore, their coefficients should be vanished,

namely
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C3mðbm � 2Þ ¼ 0: ð27bÞ
Using Eqs. (21) and (27) the coefficients C3m and C6m are obtained as
C3m ¼ C6m ¼ 0: ð28Þ
In this case bm – 2;4, doing the same procedure as bm > 1, It can be seen that C2 ¼ C3 ¼ C6 ¼ 0.
To satisfy the last regularity condition (20e), as r approaches zero, it should be considered two intervals 0 < bm < 1 and

bm P 1, again.
In the case 0 < bm < 1, some terms of the limit in Eq. (24b) do not vanish for k ¼ 0 which containing r�bm�1 and rbm�1. To

satisfy Eq. (24b), the coefficients of these terms must be vanished, that is
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In the case bm P 1, the coefficients of r�bm�1 and r1�bm should be zero, then
C2m � C3m
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C3mbm ¼ 0: ð30bÞ
It can be seen that Eqs. (29) and (30) are the same as relations (25) and (27) which have been obtained from applying the
second regularity condition (20d).

In order to obtain the unknown coefficients C1m; C3m and C5m, the boundary condition at the circular edge of the FG cir-
cular plate should be applied. The circular edge at r ¼ a can be simply supported (type 2), clamped or free with following
conditions:
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Simply supported ðtype 2Þ :

v ¼ 0; Nr ¼ 0; w ¼ 0; wh ¼ 0; Mr ¼ 0; ð31aÞ
Clamped :

u ¼ 0; v ¼ 0; w ¼ 0; wr ¼ 0; wh ¼ 0; ð31bÞ
Free :

Nr ¼ 0; Nrh ¼ 0; Q r ¼ 0; Mr ¼ 0; Mrh ¼ 0: ð31cÞ
Based on the relations (18), it can be seen that applying two last conditions in each of the boundary conditions (31) will ex-
actly satisfy the two first conditions, i.e. satisfying the two last conditions for simply supported edge ðwh ¼ 0; Mr ¼ 0Þ will
spontaneously satisfy two fist conditions ðv ¼ 0; Nr ¼ 0Þ due to relations (18). Therefor, in order to determine the remaining
unknown coefficients of FG plate, it is sufficient to apply the three last conditions of Eq. (31) at r ¼ a.

4. Singularities in boundary layer function, moment and shear force resultants

It should be noticed that the modified Bessel functions of second kind is singular at r ¼ 0. Therefore, the boundary layer
function in Eq. (15b) is singular for 0 < bm < 1.

Also, to study the singularity in the moment and shear force resultants in all intervals of bm, the moment and shear force
resultants can be obtained by using Eqs. (7) and (9). Expressing the Bessel function in terms of their power series, the mo-
ment and shear force resultants are written as
Mr ¼ L1C3mr�bm þ ðL2C2m þ L3C3m þ L4C6mÞr�bm�2 þ ðL5C1m þ L6C4m þ L7C5m þ L8C6mÞrbm�2

 

þ L9C4mrbm þ L10pmr2

ðb2
m � 4Þðb2

m � 16Þ

!
sinðbmhÞ; ð32aÞ
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þ L29C4mrbm þ L30pmr2

ðb2
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ðbm � 4Þ

� �
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Q h ¼ L36C3mr�bm�1 þ ðL37C4m þ L38C5m þ L39C6mÞrbm�1 þ L40C6mr�bmþ1 þ pmr
ðbm � 4Þ

� �
cosðbmhÞ; ð32eÞ
where Li’s are constants and some of them are given in Appendix A. When 0 < bm < 1 and using Cim’s which are obtained
from the previous, Eqs. (32) can be simplified as follows:
Mr ¼ L1C3mr�bm þ L9C4mrbm þ L10pmr2

ðb2
m � 4Þðb2

m � 16Þ

 !
sinðbmhÞ; ð33aÞ
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ðb2
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 !
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ðb2
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 !
cosðbmhÞ; ð33cÞ
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ðbm � 4Þ

� �
sinðbmhÞ; ð33dÞ

Q h ¼ L36C3mr�bm�1 þ ðL37C4m þ L38C5m þ L39C6mÞrbm�1 þ L40C6mr�bmþ1 þ pmr
ðbm � 4Þ

� �
cosðbmhÞ: ð33eÞ
It is easy to show that for 0 < bm < 1, the moment and shear force resultants are singular in the vicinity of the vertex of the
sector plate ðr ! 0Þ. It can be seen that the moment resultants (Mr; Mh and MrhÞ vary in the form of r�bm at the vertex of the
sector plate. Also, the force resultants (Q r and Q hÞ vary in the form of rbm�1 for 0 < bm < 1 in the near of r ¼ 0. It was seen
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before, for bm > 1, the three coefficients vanish ðC2m ¼ C3m ¼ C6m ¼ 0Þ. By performing the procedure as previous case, the
moment and shear force resultants for bm > 1 in the near of vertex of sector plate are
Mr ¼ ðL5C1m þ L6C4m þ L7C5mÞrbm�2 þ L9C4mrbm þ L10pmr2

ðb2
m � 4Þðb2

m � 16Þ

 !
sinðbmhÞ; ð34aÞ
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Mrh ¼ ðL25C1m þ L26C4m þ L27C5mÞrbm�2 þ L29C4mrbm þ L30pmr2
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� �
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Qh ¼ ðL37C4m þ L38C5mÞrbm�1 þ pmr
ðbm � 4Þ

� �
cosðbmhÞ: ð34eÞ
Considering Eqs. (34), it can be easily shown that the moment resultants are singular in the interval 1 < bm < 2 at the vertex,
but they are finite for bm > 2 as r approaches zero. Since the shear force resultants vary in the form of rbm�1, they are not
singular for bm > 1.

Similarly, applying the same procedure for the solution of bm ¼ 2;4, it is easy to show that the moment and shear force
resultants are finite at the vertex of sector plate.

5. DQ analog

Since no studies have been found for FG sector plates, in order to verify our results, it is also attempted to solve our prob-
lem using differential quadrature method (DQM). To this end, the sector plate is discretized into some grid points nr and nh in
the r and h directions, respectively. Based on the DQM rules, given in Appendix B, the governing equations (2) can be discret-
ized in the following form:
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The boundary conditions can be also discretized at the circular and straight edges of the sector plate in a similar
manner.

Eqs. (35) can be shown in the matrix form as
½A1�fFBg þ ½A2�fFIg ¼ fPg; ð36Þ
where fFBg and fFIg are the boundary and domain degrees of freedom vectors, respectively, these vectors can be written
as:
fFIg ¼

fuIg
fv Ig
fwIg
fwrIg
fwhIg

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; fFBg ¼

fuBg
fvBg
fwBg
fwrBg
fwhBg

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð37Þ
where
fuIg ¼ u22 u23 . . . uðNr�1ÞðNh�1Þ
	 


; fuBg ¼ u11 u12 . . . uNr Nh½ �;
fv Ig ¼ v22 v23 . . . v ðNr�1ÞðNh�1Þ

	 

; fvBg ¼ v11 v12 . . . vNr Nh½ �;

fwIg ¼ w22 w23 . . . wðNr�1ÞðNh�1Þ
	 


; fwBg ¼ w11 w12 . . . wNr Nh½ �;
fwrIg ¼ wr22 wr23 . . . wrðNr�1ÞðNh�1Þ

	 

; fwrBg ¼ wr11 wr12 . . . wrNr Nh

	 

;

fwhIg ¼ wh22 wh23 . . . whðNr�1ÞðNh�1Þ
	 


; fwhBg ¼ wh11 wh12 . . . whNr Nh

	 

:

ð38Þ
Also the discretized boundary conditions can be formed as the following matrix equation as
½A3�fFBg þ ½A4�fFIg ¼ 0: ð39Þ
Obtaining the boundary degrees of freedom vector from Eq. (39) and substituting the result into Eq. (36), yields
fFIg ¼ ð½A2� � ½A1�½A3��1½A4�Þ�1fPg: ð40Þ
It is clear that the plate responses can be obtained by solving Eq. (40). It is noticeable that to obtain the results for sector plate
in DQM, the annular sector plate with inner to outer radius of 10�7 ðri=a ¼ 10�7Þ is solved.
6. Numerical results

To present the numerical results, SUS304 and Si3N4 are used as the metal and ceramic in FG plate, respectively. The Pois-
son’s ratio of 0.3 has been used. The quantity of the applied uniform load is supposed to be P0 ¼ 1 and the shear correction
factor is assumed to be K2 ¼ 5=6. Also, T ¼ 300 K is used as the temperature value.

Also, for numerical results in figures, the geometric properties of the sector plate such as thickness-radius ratio, and sector
angle are assumed to be 0.2 and p

3, respectively (the unit of the length is meter).
In order to verify the accuracy of the present results, the deflection of the FG sector plate is also obtained using differential

quadrature method (DQM). The convergent study of maximum deflection of a FG plate with two simply supported radial
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edges and free circular edge is shown in Table 2 for various powers of the functionally graded material. The sector angle is
60� and the number of node in h direction is considered nh ¼ 25 and the number of node in r direction ðnrÞ varies from 13 to
20 nodes. The results indicate the convergence of the solution.

Tables 3–5 show the transverse deflection of a sector plate with clamped, simply supported and free circular edge, respec-
tively, which is obtained from the mentioned exact method in comparison with the DQM results. The non-dimensional
transverse displacement �w ¼ A11

P0h2 w
� �

is considered at the middle line of the sector plate ðh ¼ a=2Þ and r ¼ 0:25;0:5 and
0.75. From these tables, it can be found that the present formulations are accurate.
Table 3
A comparison study of the transverse displacement for a FG sector plate with clamped circular edge.

a n Method h=a ¼ 0:1 h=a ¼ 0:2

0.25 0.5 0.75 0.25 0.5 0.75

30 1 Exact 1.6586 11.7274 20.4431 0.2586 1.3549 2.2940
DQM 1.6586 11.7274 20.4431 0.2586 1.3255 2.2940

2 Exact 1.6352 11.4872 20.0273 0.2572 1.3102 2.2665
DQM 1.6352 11.4872 20.0272 0.2572 1.3102 2.2665

60 1 Exact 23.6755 80.7456 71.3552 2.2593 7.2164 7.0044
DQM 23.6755 80.7455 71.3550 2.2593 7.2164 7.0044

2 Exact 23.1271 78.8054 69.7427 2.2247 7.0932 6.8998
DQM 23.1271 78.8053 69.7425 2.2247 7.0931 6.8998

Table 4
A comparison study of the transverse displacement for a FG sector plate with simply supported circular edge.

a n Method h=a ¼ 0:1 h=a ¼ 0:2

0.25 0.5 0.75 0.25 0.5 0.75

30 1 Exact 1.6728 12.4518 25.2544 0.2593 1.3599 2.5226
DQM 1.6728 12.4518 25.2544 0.2593 1.3599 2.5226

2 Exact 1.6489 12.1885 24.6851 0.2578 1.3434 2.4870
DQM 1.6489 12.1885 24.6850 0.2578 1.3434 2.4870

60 1 Exact 27.8932 107.7284 124.2744 2.4924 8.7077 9.9316
DQM 27.8934 107.7285 124.2741 2.4924 8.7077 9.9315

2 Exact 27.2202 104.9914 121.0999 2.4503 8.5367 9.7332
DQM 27.2204 104.9914 121.0997 2.4503 8.5366 9.7331

Table 5
A comparison study of the transverse displacement for a FG sector plate with free circular edge.

a n Method h=a ¼ 0:1 h=a ¼ 0:2

0.25 0.5 0.75 1 0.25 0.5 0.75 1

30 1 Exact 1.7179 15.1295 51.7162 116.1560 0.2625 1.5528 4.4959 9.2223
DQM 1.7179 15.1296 51.7162 116.1559 0.2625 1.5528 4.4959 9.2223

2 Exact 1.6929 14.7946 50.4510 113.2058 0.2609 1.5319 4.4166 9.0327
DQM 1.6929 14.7946 50.4510 113.2057 0.2609 1.5319 4.4166 9.0327

60 1 Exact 57.7407 337.2656 84.2907 1533.2566 4.4521 23.8551 58.0112 103.5088
DQM 57.7412 337.2663 846.2911 1533.2562 4.4522 23.8551 58.0112 103.5087

2 Exact 56.2421 328.1938 823.2758 1491.4075 4.3583 23.2864 56.5633 100.8590
DQM 56.2425 328.1945 823.2762 1491.4072 4.3584 23.2864 56.5633 100.8589

Table 2
The convergence of the maximum transverse displacement of the sector plate on the free edge ða ¼ 60�; h=a ¼ 0:2; nh ¼ 25Þ.

n nr Exact

13 14 15 16 17 18 19 20

0 102.0422 102.0447 102.0454 102.0456 102.0457 102.0457 102.0457 102.0457 102.0458
0.5 104.3205 104.3232 104.3240 104.3242 104.3243 104.3243 104.3243 104.3243 104.3243
1 103.5050 103.5077 103.5085 103.5087 103.5087 103.5087 103.5087 103.5087 103.5088
2 100.8557 100.8580 100.8587 100.8589 100.8589 100.8589 100.8589 100.8589 100.8590
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In order to study the effects of boundary layer function, this function is depicted for different powers of FGM in Figs. 2 and
3 for the FG sector plate with clamped and free circular edge, respectively. It should be noticed that U is the boundary layer
function multiply by 1012ðU ¼ u4 � 1012Þ. It can be seen that this function has significant effect on the edges of the plate
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Fig. 3. The variation of the boundary layer function along the radial direction of FG sector plate with free circular edge.
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Fig. 2. The variation of the boundary layer function along the radial direction of FG sector plate with clamped circular edge.
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hence it can be called the boundary layer function. Also, it can be concluded that with increasing the power of FGM, the
width of this function increases. The boundary layer functions of clamped and free sector plate are shown in Fig. 4. It can
be found that the effect of this function on free edge is more than that of clamped edge.

The variation of the out of plane shear stress rrz has been depicted across the radial edges in Fig. 5 for various powers of
FGM. The FG sector plate has free boundary condition at the circular edge.
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7. Conclusion

In the present work, the singularity and boundary layer effect in the functionally graded sector plate have been studied.
The governing equilibrium equations of FG sector plate have been obtained based on the first-order shear deformation plate
theory. These highly coupled partial differential equations have been decoupled and solved using an analytical method. It is
seen that there are singularities for moments and shear forces at the vertex of the FG sector plate. Also, it has been shown
that the effects of boundary layer function of the FG plate are similar to isotropic one. Since the effect of boundary layer func-
tion for FG plate is similar to isotropic and composite plates, this function seems to be material independent. Finally, in order
to verify the accuracy of the result, the governing equations of FG sector plate have been also solved using differential quad-
rature method.

Appendix A

The coefficients of the moment resultant are given as follows:
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Appendix B

According to the DQ method rules, the partial derivative of a function with respect to a space variable is approximated by
a weighted linear combination of the function values at the grid points. The mth derivative of the function f ðr; hÞwith respect
to r and h, respectively, can be written as
@mf ðri; hjÞ
@rm

¼
Xnr

n¼1

AðmÞin f ðrn; hjÞ

@mf ðri; hjÞ
@hm ¼

Xnh

n¼1

AðmÞjn f ðri; hnÞ for i ¼ 1; . . . ;nr; j ¼ 1; . . . ;nh;

ðB:1Þ
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where AðmÞpq are the weighting coefficients related to the mth order derivative. The off-diagonal and diagonal weighting ele-
ments related to the first-order derivative are defined as follows, respectively:
Að1Þpq ¼
MðxpÞ

ðxp � xqÞMðxqÞ
for p – q; p; q ¼ 1;2; . . . ; nx;
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Að1Þpq ;
ðB:2Þ
where x is the independent variable ðr; hÞ and the partial derivative is defined with respect to it. MðxiÞ is given as:
MðxpÞ ¼
Ynx

q¼1
q–p

ðxp � xqÞ: ðB:3Þ
The following relationship is given for evaluating the weighting coefficients of higher-order derivatives:
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In the present study the Gauss–Chebyshev–Lobatto is used to locate the grid points,
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