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a b s t r a c t

As a powerful paradigm for knowledge representation and a simulation mechanism applicable to
numerous research and application fields, Fuzzy Cognitive Maps (FCMs) have attracted a great deal of
attention from various research communities. However, the traditional FCMs do not provide efficient
methods to determine the states of the investigated system and to quantify causalities which are the
very foundation of the FCM theory. Therefore in many cases, constructing FCMs for complex causal
systems greatly depends on expert knowledge. The manually developed models have a substantial
shortcoming due to model subjectivity and difficulties with accessing its reliability. In this paper,
we propose a fuzzy neural network to enhance the learning ability of FCMs so that the automatic
determination of membership functions and quantification of causalities can be incorporated with the
inference mechanism of conventional FCMs. In this manner, FCM models of the investigated systems
can be automatically constructed from data, and therefore are independent of the experts. Furthermore,
we employ mutual subsethood to define and describe the causalities in FCMs. It provides more explicit
interpretation for causalities in FCMs and makes the inference process easier to understand. To validate
the performance, the proposed approach is tested in predicting chaotic time series. The simulation studies
show the effectiveness of the proposed approach.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since the pioneering work of Kosko (1986), fuzzy cognitive
maps (FCMs) have attracted a great deal of attention from
various research communities. As a modeling methodology for
complex systems, FCMs model the investigated causal system as a
collection of concepts and causal relations among concepts, which
originate from the combination of fuzzy logic and neural networks.
Intuitively, a FCM is a signed directed graph with feedback, which
consists of a collection of nodes and directed weighted arcs
interconnecting nodes. Fig. 1 gives the graphical representation of
a FCM and its neural network structure.

In FCMs, nodes represent the concepts with semantic meaning
that are abstracted from the investigated systems. The state of a
concept is characterized by a number xi in the interval [0, 1] or in
the interval [−1, 1].
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Accordingly, the behavior of an investigated system at time
point t is expressed by a vector X(t) = (x1(t), . . . , xN(t)) where
N denotes the number of concepts. In addition, the directed arcs
interconnecting nodes represent the causal–effect relationships
(causalities) among the different concepts. Theweightwij (i, j ∈ N)
that associates with the arc pointing from xi to xj, describes the
type and the strength of the causality from xi to xj, ranging in
the interval [−1, 1]. Usually, wij has three possible types: positive
causality (wij > 0), negative causality (wij < 0) or no causality
(wij = 0). The absolute value of wij quantifies the strength of the
causality; the sign of wij indicates that the causality from xi to xj is
direct or inverse. For the sake of simplicity, weights in a FCM can
be represented by a matrixW ∈ RN .

Note that in FCMs, all the elements of the principal diagonal wii
are equal to zero because a concept cannot cause itself and there
is no causal relationship between a concept and itself. On the basis
of the above definitions, the inference mechanism of FCMs can be
described by Eq. (1),

X(t + 1) = f (X(t) · W ) (1)

where X(t + 1) and X(t), respectively describe the dynamical
behavior of the investigated system at discrete times (t + 1) and
t; f is a sigmoid function, which squashes the result in the interval
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Fig. 1. Example of a FCM.

[0, 1]. Therefore, the inference mechanism could be regarded as
an iterative process that applies the scalar product and sigmoid
function to generate the discrete time series of the system until
the state vector ends in a fixed point, limit cycle, or more complex
ones may end in an aperiodic or chaotic attractor (Boutails, Kottas,
& Christodoulou, 2009; Kottas & Boutalis, 2004).

By storing the existing knowledge on the behaviors of the
investigated system in the structure of nodes and interconnections
of the map, FCMs provide a more flexible and natural mechanism
for knowledge representation and reasoningwhich are essential to
intelligent systems (Miao & Liu, 2001). The advantages of applying
FCMs formalism are summarized as follows.

a. FCMs’ graphical nature allows one to visualize the structure of
the investigated systemandmakes themodels relatively simple
and legible.

b. FCMs’ mathematical foundation allows one to express the
dynamic behavior of the investigated system in algebraic forms.

Just because FCMs have several desirable properties (Liu &
Satur, 1999; Stylios & Groumpos, 2004), such as abstraction,
flexibility, adaptability and fuzzy reasoning, the application ex-
amples can be found in decision-making methods, geographical
information systems, and prediction of time series (Kottas &
Boutalis, 2006; Liu & Zhang, 2003; Papageorgiou, Stylios, &
Groumpos, 2003; Pelaez & Bowles, 1995; Stach, Kurgan, & Pedrycz,
2008; Stylios & Groumpos, 1999).

In the past decades, several works on FCMs have been proposed
in order to investigate the extensions of FCMs. Liu and Satur
(1999), Miao and Liu (2000, 2001) have made some significant
and extensive investigations on the inference properties of FCMs.
Moreover, Miao and Liu (2001) proposed dynamic causal networks
(DCN) to quantify the description of concepts with required
precision as well as the strength of causality between concepts.
Based on the further study of the inference mechanism and
convergent features of FCMs, Zhou, Liu, and Zhang (2006) proposed
fuzzy causal networks (FCNs). An integrated two-level hierarchical
system based fuzzy cognitive map has been proposed and applied
into decision making in radiation therapy (Papageorgiou et al.,
2003). In addition, Stach and Lukasz employed FCMs to predict
time series in Stach et al. (2008). Besides these applied researches,
the decomposition theory of FCMs has been studied in Zhang,
Liu, and Zhou (2003) and Zhang, Liu, and Zhou (2006), which
provides an effective framework for calculating and simplifying
causal patterns in complicated real world applications.

Although some research works have been done on FCMs, very
few researches have investigated how to automatically identify the
membership functions and quantify the causalities in FCMs. As a
kind of inference model based on fuzzy theory, the membership
functions are crucial to fuzzification and defuzzification in FCMs.
However FCMs lack effective methods to identify membership
functions which are absolutely necessary to describe system states
in FCMs. Therefore, the inference results generated by FCMs are
always limited into the fuzzy domain so that it is difficult to
directly compare the inference results against real data. As a
result, in most existing literature about FCMs, the interpretation
of inference result greatly depends on expert knowledge. The
subjective interpretation is not more or less convincing. From this
perspective, the automatic identification of membership functions
for different concepts in the concerned systems has become a very
urgent and realistic issue.

Secondly in many research works on FCMs, the causalities
are still quantified based on expert knowledge. But for various
practical problems, it is a hard task for human experts to accurately
pre-specify the causalities among concepts which constitute a
specific causal system. To deal with this problem, the learning
algorithms applicable to FCMs have been proposed in Koulouriotis
(2002), Koulouriotis and Diakoulakis (2001) and Song, Shen, and
Miao (2007) that are respectively based on evolution strategies
and particle swarm optimization. However in these approaches,
the definition about causality is not exactly consistent with that
of conventional FCMs. Accordingly, the quantified causalities lack
transparent mathematical interpretation and make the inference
process ambiguous. More recently, Stach et al. (2008) presented
an application framework which employed FCMs to implement
numerical and linguistic prediction of time series. However in
Stach et al. (2008), many procedures are introduced for pre-
processing the raw dataset. It makes the predictionmore complex.
Additionally, in all documents about FCMs (Koulouriotis, 2002;
Koulouriotis & Diakoulakis, 2001; Song et al., 2007; Stach et al.,
2008), the membership functions are still pre-specified based on
the analysis of the dataset or expert knowledge.

To solve these two problems, this paper proposes a novel fuzzy
neural network in which the inference mechanism of traditional
FCMs is integrated with automatic identification of membership
functions and quantification of causalities. By identifying the
membership functions and causalities from real data, the proposed
approach is able to construct the FCMs for the investigated system
with less human intervention and prior knowledge. Furthermore,
the employed fuzzy neural network defines and describes the
causalities in the investigated systems usingmutual subsethood. It
providesmore transparent interpretation on causalities andmakes
the inference process easier to understand.

The rest of this paper is organized as follows. Section 2 describes
the structure, the functionalities and the corresponding operations
of our approach in detail. Section 3 presents the supervised learn-
ing algorithmwhich is employed to tune the related parameters in
the proposed fuzzy neural network. In Section 4, the performance
of our approach is tested in predicting three benchmarking chaotic
time series. The comparisons of the experimental results of the
proposed approach with other models are also given in Section 4.
Finally, Section 5 presents the conclusions.

2. The proposed approach

From the above introduction, we can see that the manually
developed FCMs have a substantial shortcoming due to model
subjectivity and difficulties with accessing its reliability. To deal
with this problem, we propose a four-layer fuzzy neural network
in terms of the definition and description of conventional FCMs.
The proposed approach integrates the inference process of FCMs
with the identification of membership functions, as well as the
quantification of causalities. In this section, we will describe the
basic structure and functionalities which are necessary for the
understanding of our approach in detail.

Fig. 2 depicts the basic structure of the proposed four-layer
fuzzy neural network. In the fuzzy neural network, the inputs and
outputs are represented by non-fuzzy vectors XT

= (x1, . . . ,
xi, . . . , xN) and Y T

= (y1, . . . , yi, . . . , yN), respectively, where N
denotes the numbers of the input and output variables. We stress
that, in the proposed approach, xi and yi represent the same variable i.
Therefore in the inference process, xi and yi, respectively represent
the state of the variable i at iteration t and iteration t + 1.
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2.1. Input layer

Each node xi (i ∈ N) in the ‘Input layer’ represents a domain
variable of the investigated system, which is connected with the
‘Linguistic layer’ using the fixed weight 1. Therefore, xi directly
transmits the crisp (non-fuzzy) input value to the next layer.
Accordingly, the net input f (1)

i and net output x(1)
i of the ith node

are given in Eq. (2) (the number in parentheses in superscript
represents the level number of the proposed neural network).

f (1)
i = xi; x(1)

i = f (1)
i . (2)

2.2. Linguistic layer

The node ILnii (mi = 1, . . . ,Mi) in the linguistic layer expresses
a semantic symbol of the input xi, such as ‘Small’, ‘Medium’ or
‘Large’, etc. Hence, each ILnii represents a fuzzy subset on xi. In our
approach, the fuzzy set ILnii is modeled by membership function
µIL

ni
i
(xi) that is a symmetric Gaussian function and described by,

µIL
ni
i
(xi) = exp


−


xi − C IL

ni
i

2
/σ 2

IL
ni
i


(3)

where CIL
ni
i
and σIL

ni
i
represent center and width, respectively. The

symmetric Gaussian membership function instead of triangular
or trapezoidal function ensures the differentiability that is a
necessary property for the backpropagation algorithm employed
in the learning process.

Accordingly, the net input f (2)
IL
ni
i

and net output x(2)
IL
ni
i
of the ILnii th

linguistic node are given in Eq. (4),

f (2)
IL
ni
i

= −


x(1)
i − C IL

ni
i

2
/σ 2

IL
ni
i

x(2)
IL
ni
i

= e
f (2)
IL
ni
i = e

−


x(1)i −C

IL
ni
i

2
/σ 2

IL
ni
i .

(4)

It is obvious that the fuzzification of the system is accomplished
in the linguistic layer. The net output x(2)

IL
ni
i
is the membership grade

of the input variable xi belonging to the fuzzy subset ILnii .

2.3. Mapping layer

As the semantic mapping of the linguistic layer, the node in the
mapping layer denotes the current state of the linguistic term ILnii
under the influences that are imposed by the previous states of its
own and other variables.

As mentioned previously, a given input variable xi and the
corresponding output variable yi represent the same concept.
Therefore, the linguistic term OLnii of the output variable yi
indicates the same semantic symbol expressed by ILnii . So, the
linguistic term OLnii is also described by the symmetric Gaussian
function with center COL

ni
i

and spread σOL
ni
i
, denoted by OLnii =

(COL
ni
i
, σOL

ni
i
). According to the above introduction, we can draw

CIL
ni
i

= COL
ni
i
and σIL

ni
i

= σOL
ni
i
.

Note that in traditional FCMs, a concept cannot cause itself
and there is no causal relationship between a concept and itself.
Due to this limitation, the mapping layer is connected with the
linguistic layer along with fuzzy weight 1 − ε(ILnii ,OL

mj
j ), where

ε(ILnii ,OL
mj
j ) is a mutual subsethood (Kosko, 1997; Song, Miao, &

Shen, 2009) between ILnii and OL
mj
j . According to the definition of

mutual subsethood, ε(ILnii ,OL
mj
j ) measures the similarity between

fuzzy subset ILnii and fuzzy subset OL
mj
j . For the given fuzzy sets ILnii
and OL
mj
j that are respectively described by Gaussian membership

functions exp(−((x−CIL
ni
i
)/σIL

ni
i
)2) and exp(−((x−C

OL
mj
j

)/σ
OL

mj
j

)2),

the mutual subsethood ε(ILnii ,OL
mj
j ) is formulated,

ε(ILnii ,OL
mj
j ) =

C(ILnii ∩ OL
mj
j )

C(ILnii ∪ OL
mj
j )

=
C(ILnii ∩ OL

mj
j )

C(ILnii ) + C(OL
mj
j ) − C(ILnii ∩ OL

mj
j )

;

ε(ILnii ,OL
mj
j ) ∈ [0, 1] . (5)

In addition, the cardinality C(ILnii ) of fuzzy set ILnii and the
cardinality C(OL

mj
j ) of fuzzy set OL

mj
j can be defined by,

C

ILnii


=

∫
+∞

−∞

exp


−


x − CIL

ni
i


/σIL

ni
i

2
dx (6)

C

OL

mj
j


=

∫
+∞

−∞

exp


−


x − C

OL
mj
j


/σ

OL
mj
j

2

dx. (7)

It is worth noting that, in Eq. (5), the denominator represents
the area of union set of fuzzy sets ILnii and OL

mj
j , while numerator

represents the area of the intersection set of fuzzy sets ILnii and
OL

mj
j . Therefore, we can derive 0 ≤ C(ILnii ∩ OL

mj
j ) ≤ C(ILnii ∩

OL
mj
j ). Based on Eq. (5), we can see that the fuzzy weight 0 ≤

1 − ε(ILnii ,OL
mj
j ) ≤ 1. For example, if ILnii and OL

mj
j represent the

same concept (i = j) in a given FCM, then ε(ILnii ,OL
mj
j ) takes the

maximum value 1. As a result, the fuzzy weight between ILnii and
OL

mj
j is 1 − ε(ILnii ,OL

mj
j ) = 0. This particular situation complies

with the definition of causalities in traditional FCMs inwhichwii =

0 because a concept cannot cause itself and there is no causal
relationship between a concept and itself.

Therefore, we can see that the fuzzy weight 1 − ε(ILnii ,OL
mj
j )

effectively describes the causal–effect relationship from the input
linguistic term ILnii to the output linguistic term OL

mj
j .

Furthermore, the mapping layer realizes the defuzzification of
output variables. The defuzzification is performed using standard
volume based centroid defuzzification (Kosko, 1997; Song et al.,
2009). As a result, the input f (3)

OL
mj
j ,IL

ni
i

and output x(3)

OL
mj
j

of OL
mj
j are

expressed by Eq. (8)

f (3)

OL
mj
j ,IL

ni
i

= x(2)
IL
ni
i


1 − ε


ILnii ,OL

mj
j


x(3)

OL
mj
j

=

N−
i=1 and i≠j
ni=1,2,...,Ni


f (3)

OL
mj
j ,IL

ni
i

· CIL
ni
i

· σIL
ni
i


N−

i=1 and i≠j
ni=1,2,...,Ni


f (3)

OL
mj
j ,IL

ni
i

· σIL
ni
i


.

(8)

In Eq. (8), the calculation of mutual subsethood ε(ILnii ,OL
mj
j )

depends on the nature of the overlap of the ILnii and OL
mj
j , i.e., upon

the values of CIL
ni
i
, C

OL
mj
j

, σIL
ni
i

and σ
OL

mj
j
. Case-wise expressions of

mutual subsethood ε(ILnii ,OL
mj
j ) therefore need to be derived and

the expressions are summarized in Table 1.
In Table 1, erf(x) denotes the standard error function that is

described as,

erf(x) =
1

√
2π

∫ x

0
e−

t2
2 dx (9)
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Table 1

Calculation of mutual subsethood ε

ILnii , IL

mj
j


.

Mutual subsethood ε(ILnii , IL
mj
j )

λ1 = (σ
IL
mj
j
CIL

ni
i

− σIL
ni
i
C
IL
mj
j

)/(σ
IL
mj
j

− σIL
ni
i
); λ2 = (σ
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j
CIL
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i

+ σIL
ni
i
C
IL
mj
j

)/(σ
IL
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j

+ σIL
ni
i
) are crossing points between

ILnii and IL
mj
j

Case 1
C
IL
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j

= CIL
ni
i

A.
σ
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1
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σ
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/σ
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i
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i
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σ
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i
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i
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1
2 −erf


√
2


λ2−C
IL
ni
i


/σ

IL
ni
i

]
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1
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√
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Fig. 2. The structure of the proposed fuzzy neural network.

which has limited values erf (−∞) = −
1
2 , erf (∞) =

1
2 and

erf(0) = 0.

2.4. Output layer

In the output layer, each node yj represents the current state of
concept j, which is only connected with the linguistic term nodes
OL

mj
j (mj = 1, . . . ,Mj) in the mapping layer along with the crisp

weight ξj,mj . The input f (4)
j and output x(4)

j of the jth node are
calculated by,

f (4)
j =

Mj−
mj=1

ξj,mj · x
(3)

OL
mj
j

; x(4)
j = f (4)

j . (10)
Eq. (10) indicates that the current state of concept j is a linear
function of the defuzzified linguistic terms OL

mj
j (mj = 1, . . . ,Mj).

By doing so, our approach makes better use of the mapping
capability offered by the defuzzified linguistic terms.

3. Supervised learning algorithm

In the proposed fuzzy neural network, the supervised learning
algorithm based on backpropagation is used to tune the related
parameters. According to the architecture and the operations of
the proposed approach that have been discussed previously, the
parameters that need to be trained can be represented by a vector
P =


CIL

ni
i
, σIL

ni
i
, ξj,mj


.

The training process involves repeated presentation of input
patterns drawn from the training set and comparing the output
of the network with the desired value to obtain the error. The
instantaneous squared error E (τ ) = 1/2

∑N
i=1 (di (τ ) − xi (τ ))2 is

computed as a training performance parameter, where di (τ ) and
xi (τ ), respectively denote the desired and computed state value
of concept xi at time step τ . Then the iterative gradient descent
update equation is written as,

ξj,mj = ξj,mj (τ ) − η(∂E (τ ) /∂ξj,mj (τ )) (11)

CIL
ni
i

= CIL
ni
i

(τ ) − η(∂E (τ ) /∂CIL
ni
i

(τ )) (12)

σIL
ni
i

= σIL
ni
i

(τ ) − η(∂E (τ ) /∂σIL
ni
i

(τ )) (13)

where η is the learning rate. Then the standard iterative pattern
based gradient descent method and the chain rule are utilized,
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Table 3
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layer by layer, starting from the output layer. Once the network
is trained to the desired level of error, it is tested by unseen test set
patterns.

Particularly, we need to stress the learning process in the
mapping layer. If i = j and ni = mj, then, the node ILnii in the
linguistic term layer and the nodeOL

mj
j in themapping layer should

be described by the same Gaussian function so that they have
the same semantic meaning. Therefore, according to the updated
values of CIL

ni
i
and σIL

ni
i
in the linguistic layer, the parameters C

OL
mj
j

and σ
OL

mj
j

in the mapping layer are tuned simultaneously.

Therefore, the expressions of partial derivatives in the above
update equations are derived as follows.

3.1. Update in output layer

In this layer, the weight ξj,mj which connects the output lin-
guistic term OL

mj
j with the jth crisp output is adjusted according to

Eq. (11). Since the output yl (l ≠ j) is independent of the given ξj,mj ,
the error derivative with respect to ξj,mj is computed by,

∂E (τ ) /∂ξj,mj (τ ) =
∂E
∂yl

·
∂yl

∂ξj,mj

= −(dj − yj)x
(3)

OL
mj
j

(14)

where dj and yj, respectively denote the desired and the computed
state value of concept j.

3.2. Update in mapping layer

As Eq. (8) shows, the operation of the neurons in the mapping
layer completely depends on the output of the linguistic layer,
center COL

ni
i

and width σOL
ni
i
. As mentioned in Section 2.3, the

center COL
ni
i

and width σOL
ni
i

of the linguistic term OLnii are the

same as center CIL
ni
i
and width σIL

ni
i
of the linguistic term ILnii which

have been defined in the linguistic layer. Therefore, the updates of
parameters COL

ni
i
and σOL

ni
i
are simultaneously performed as in the

linguistic layer.
3.3. Update in linguistic layer

In the linguistic layer, the centerCIL
ni
i
andwidthσOL

ni
i
associating

with the linguistic term ILnii are tuned according to Eqs. (12) and
(13). For the error derivative with respect to CIL

ni
i
and σIL

ni
i
,

∂E
∂CIL

ni
i

=

N−
l=1
l≠j

∂E
∂yl

N−
ml=1

∂yl
∂x(3)

OL
ml
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·

∂x(3)
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l

∂ f (3)
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i

·

∂ f (3)
OL
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∂CIL
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(15)

∂E
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∂yl
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∂ f (3)
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l ,IL
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·

∂ f (3)
OL
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l ,IL
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i

∂σ IL
ni
i

. (16)

So we can rewrite Eqs. (15) and (16) by substituting Eqs. (4), (8)
and (10), and obtain the expressions in Box I.

In Eqs. (17) and (18), ∂ε(ILnii ,OLml
l )/∂CIL

ni
i

and ∂ε(ILnii ,OLml
l )/

∂σIL
ni
i

are essential to compute ∂E/∂CIL
ni
i

and ∂E/∂σIL
ni
i
. Corre-

sponding to the case-wise expressions of mutual subsethood
ε(ILnii ,OL

mj
j ) that is described in Table 1, the ∂ε(ILnii ,OLml

l )/∂CIL
ni
i

and ∂ε(ILnii ,OLml
l )/∂σIL

ni
i
are calculated and summarized in Tables 2

and 3 respectively.
For the ∂(C(ILnii ∩ OL

mj
j ))/∂CIL

ni
i
and ∂(C(ILnii ∩ OL

mj
j ))/∂σIL

ni
i
in

Tables 2 and 3, we can respectively derive and describe them in
Tables 4 and 5.

In terms of the calculated ∂(C(ILnii ∩ OL
mj
j ))/∂CIL

ni
i
, ∂(C(ILnii ∩

OL
mj
j ))/∂σIL

ni
i
, ∂E(ILnii ,OLml

l )/∂CIL
ni
i

and ∂E(ILnii ,OLml
l )/∂σIL

ni
i
, we

can update the center CIL
ni
i

and width σOL
ni
i

in the linguistic layer
according to Eqs. (17) and (18).

4. Simulations

This section describes three simulation examples of the pro-
posed approach. These examples include chaotic Duffing forced-
oscillation system (Example 1), Mackey–Glass dataset (Example 2)
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l≠i

(yl − dl)
Nl−

ml=1

ξl,ml ·

N∑
i=1,i≠l
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Box I.
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and chaotic Lorenz attractor system (Example 3). The performance
of the proposed approach is compared with the recently devel-
oped fuzzy systems and fuzzy neural networks (Alpaydn &Dundar,
2002, Chun, 2007, Jun, Henry, & Lo, 2008, Song et al., 2009, Zhang
et al., 2003) in these examples.

In all applications, the centers of fuzzy sets are randomly initial-
ized in the range of the minimum and maximum values of the in-
put variables. The spreads of all fuzzy sets involved in the proposed
method are randomly initialized in the range (0, 1). Once the pro-
posed approach is trained to the desired level of error, it is tested by
presenting unseen test set patterns. As discussed in Section 2, the
FCMmodel corresponding to each application canbe reconstructed
on the basis of the membership functions and the relevant param-
eters that are automatically identified by the training process.

4.1. Duffing forced-oscillation system

As a second-order chaotic system, theDuffing forced-oscillation
system describes a special nonlinear circuit or a pendulummoving
in a viscous medium, which is formulated,

ẍ = f (x) + µ (19)

where f (x) = −Pẋ − P1x − P2x3 + q cos(wt) is the system
dynamics; t is the time variable,w is the frequency;µ is the control
effort; P, P1, P2 and q are real constants. Depending on the choice
of these constrains, it is known that the solutions of Eq. (19) may
exhibit periodic, almost periodic, and chaotic behavior. To test the
capability and applicability of the proposed approach, the complex
phase space of the Duffing forced-oscillation system is selected as
an example. For observing the complex phase space of the Duffing
forced-oscillation system, the system behavior with µ = 0 is
simulated with P = 0.4, P1 = −1.1, P2 = 1.0, w = 1.8 and
q = 1.95. The phase plane plotting from an initial condition point
[x (t = 0) = −1.2501, ẋ (t = 0) = 1.5602] is shown in Fig. 3.
Note that, in Fig. 3, the magnitudes of x(t) and ẋ(t) are one-tenth
of their actual values.

To facilitate comparisons with other approaches (Alpaydn &
Dundar, 2002; Chun, 2007; Jun et al., 2008; Song et al., 2009), the
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Fig. 3. The Duffing forced oscillation and reasoning results.
Table 6
Summarized fuzzy rules for the forced-oscillation system.

Rule index Summarization of fuzzy rules
Antecedent parts Causalities Output

R1 IF ‘x(t)is S’ on ‘x(t)is L’ 0.50945 x(t) = 0.52798 ∝ (IL11)
R2 IF ‘x(t)is S’ on ‘ẋ(t)is S’ 0.64268 + 0.34232 ∝ (IL21)
R3 IF ‘x(t)is S’ on ‘ẋ(t)is L’ 0.85885
R4 IF ‘x(t)is L’ on ‘ẋ(t)is S’ 0.67420 ẋ(t) = −0.71172 ∝ (IL12)
R5 IF ‘x(t)is L’ on ‘ẋ(t)is L’ 0.00111 +0.46623 ∝ (IL22)
R6 IF ‘ẋ(t)is L’ on ‘ẋ(t)is L’ 0.24360
input–output pair is described as (x(t), ẋ(t); x(t+1τ), ẋ(t+1τ))

where1τ = 6. Furthermore, 500 data points and 1100 data points
are randomly selected as training set and test data. Each input
and each output are described by two linguistic terms (Large and
Small). All testing results given in this example are the average per-
formance after 10 runs. The intermediate and final testing results
are also respectively depicted in Fig. 3. In addition, the member-
ship functions corresponding to the linguistic terms of each in-
put in antecedent parts have been demonstrated in Fig. 4. Since
ε(ILmi

i , IL
mj
j ) = ε(IL

mj
j , IL

mi

i
) as described by Eq. (5) and each input is

described by two linguistic terms, Table 6 summarizes the derived
six fuzzy rules where ∝ (ILmi

i ) (i = 1, 2;mi = 1, 2) denotes the
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Fig. 4. Membership functions of inputs.
Table 7
Comparisons with other methods for the Duffing forced-oscillation system based on NMSE and MSE.

Model Training data (no. of data) Training epoch No. of rules NMSE MSE

MANFISb 500 500 4 0.02878(1) NA
SAFNCc NA NA 5 0.0266(1) NA
EXMLa 500 1 36 0.1742 NA
MSBFNNd 500 50 9 0.0247(1) NA

150 9 0.0192(2) NA
SVD-QRe NA NA 5 NA 0.0038
SBFNe NA NA 5 NA 0.0015
Our approach 500 50 6 0.0257(1) 0.00273

150 6 0.0165(2) 0.0013
a 36 is the number of hidden neurons in EXML. Source code is available in http://www3.ntu.edu.sg/home/egbhuang.
b Results adapted from Jun et al. (2008).
c Results adapted from Chun (2007).
d Results adapted from Song et al. (2009).
e Results adapted from Alpaydn and Dundar (2002).
defuzzified value of x(t) and ẋ(t). Note that the fuzzy rules essen-
tially mean the different combinations of hidden neurons between
the linguistic layer and the mapping layer.

The prediction error is studied by calculating the mean squared
error (MSE) and the normalized MSE (NMSE), which are respec-
tively described as,

MSE = 1/(N)
−
k∈~


xk − x̂k

2
;

NMSE = 1/

N ·σ 2

~

−
k∈~


xk − x̂k

2
;

where xk and x̂k are the actual and the predicted kth point of the se-
ries of length~ .σ~ denotes the sample variance of the actual values
(targets) in ~ .

On the basis of NMSE and MSE, Table 7 compares the structure
and results generated by our approach, multi-input–multi-output-
ANFIS (MANFIS) (Jun et al., 2008), self-organizing adaptive fuzzy
neural control (SAFNC) (Chun, 2007), Extreme Learning Machine
(EXLM), MSBFNN (Song et al., 2009), Evolution-Based fuzzy
networks (SBFN) (Alpaydn & Dundar, 2002) and Singular-Value-
QR (SVD-QR). To facilitate comparison, ‘no. of rules’ in Table 7
are explained as number of the different combinations of hidden
neurons between the linguistic layer and the mapping layer. In
the above comparison, it is worth noting that EXML significantly
reduces the training epoch compared to other models due to its
special learning algorithm. However, this also makes it hard to
further improve the performance of EXML which greatly depends
on the number of hidden neurons.
Compared with other models, our approach generates the
smallest MSE and NMSE after 150 training epochs. For the models
with similar NMSE(1),(2), our approach needs fewer rules or
training epochs, which indicates that the rule set generated by our
approach is more efficient and compact to replicate the dynamic
behavior of Duffing forced-oscillation system than other models.

4.2. Mackey–Glass chaotic time series

Here, we evaluate the performance of our approach by applying
it to the forecasting of a Mackey–Glass chaotic time series (MG).
The dataset of MG is generated from the following delay
differential equation (Mackey & Glass, 1997),

dx(t)
dt

=
0.2x(x − τ)

1 + x10(t − τ)
− 0.1x(t) (20)

when τ > 17, Eq. (20) exhibits chaotic behavior.
The task of the time series prediction is to predict future values

x(t + 1t) (1t being the prediction time step) based on a set
of values of x(t) at certain times. To facilitate comparison with
other models, including dynamic evolving neural-fuzzy inference
system (DENFIS) (Kasabov & Song, 2002), data-driven linguistic
model (DDLM) (Gaweda & Zurada, 2003) and support vector echo
statemachine (SVESM) (Shi & Han, 2007), the time series dataset is
generated using the Runge–Kutta procedure with initial condition
x(0) = 1.2 and 1t = 6. Furthermore, the input–output pair is
described by [x(t − 24), x(t − 18), x(t − 12), x(t − 6); x(t), x(t +

6), x(t + 12), x(t + 18)].

http://www3.ntu.edu.sg/home/egbhuang
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Fig. 5. The original time series for training and test data sets.

In this case, the following experiment was conducted: 1000
data patterns are generated, from t = 124 to t = 1123. The
first 500 patterns are taken as the training data and the other 500
patterns are used for testing. Each input variable and the single
output are represented by two linguistic terms (‘Large’, ‘Medium’
and ‘Small’). To avoid a possible distortion of test results due to
function regularities (periodicity, etc.), this experiment is repeated
6 times for eliminating possible outliers.

Fig. 5 shows the predicted and the original time series for
training and test data sets. By using the learning algorithms that
are described in Section 3, themembership functions of each input
are automatically identified and depicted by Fig. 6.

On the basis of root mean squared error (RMSE) and the non-
dimensional error index (NDEI, defined as the RMSE divided by the
standard deviation of the target series), Tables 8 and 9 compare
the average performance of the proposed approach with other
methods in Gaweda and Zurada (2003), Kasabov and Song (2002),
Shi and Han (2007) and Song et al. (2009).

In contrast with DENFIS, ANFIS and SVESM, the proposed
approach provides a better prediction accuracywith fewer training
Table 8
Comparison of MSBFNN with other methods for MG DATA based on NDEI.

Model Training epochs Testing NDEI

MLP-BPb 500 0.022
DENFIS Ib 2 0.019
DENFIS IIb 100 0.016
ANFISb 50 0.036
ANFISb 200 0.029
SVESMc NA 0.0159
DDLMd NA 0.009
MSBFNNa 150 0.0107
Our approach 50 0.0212

100 0.012
a Results adapted from Song et al. (2009).
b Results adapted from Kasabov and Song (2002).
c Results adapted from Shi and Han (2007).
d Results adapted from Gaweda and Zurada (2003).

Table 9
Comparison of ProFNNwith other methods for MG DATA based on RMSE.

Model No. of parameters RMSE

NEFPROXb NA 0.0533
G-FNNb NA 0.0056
SEIT2FNNb NA 0.0034
D-FNNb 100 0.008
ILAc 37 0.0066
ANFISc 104 0.003
OLSc 211 0.0089
RBF-AFSc 210 0.0128
MSBFNNa 178 0.0024
Our approach 36 0.0027
a Results adapted from Song et al. (2009).
b Results adapted from Juang and Tsao (2008).
c Results adapted from Kasabov and Song (2002).

epochs and training parameters. This indicates that our approach
results in better compression of linguistic information to describe
the dynamics underlying the MG dataset. In terms of the RMSE
and NDEI, we can see that the prediction accuracy generated by
our approach is comparable with that of MSBFNN (Song et al.,
Fig. 6. Membership functions of input variables for Mackey–Class dataset.
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Table 10
Comparisons with other methods for the Lorenz attractor system based on RMSE and MSE.

Model Training/Testing (no. of data) Training epoch No. of hidden neurons No. of parameters RMSE

NN-based AR modela 1000/400 1000 17 81 0.0108
NN-based ARMA modela 1000/400 400 18 89 0.018
SVMb 200/300 900 NA NA 0.1410
ES-SVMb 200/300 900 NA NA 0.0352
KKFc NA NA NA NA 0.098
Our approach 1000/1128 150 18 27 0.0273

1000/1128 300 18 27 0.01647
a Results adapted from Dudul (2005).
b Results adapted from Hou and Li (2009).
c Results adapted from Ralaivola and Alche-Buc (2003).
a b

Fig. 7. The desired and the calculated trajectory of the Lorenz attractor.
2009). However, MSBFNN has the drawback that it needs more
training epochs and parameters than the proposed approach. This
improvement on structure indicates that the proposed approach
performs better in architectural economy than other models do.

4.3. Lorenz attractor system

To further test the effectiveness of the proposed approach, it
is also applied in a multiple input/output system–Lorenz attractor
system.

The Lorenz attractor is a fractal structure corresponding to the
long-term behavior of the Lorenz oscillator. The Lorenz oscillator is
a three-dimensional dynamical system that exhibits chaotic flow,
noted for its butterfly shape. The map shows how the state of
a dynamical system (the three variables of a three-dimensional
system) evolves over time in a complex, non-repeating pattern. The
differential equations that govern the Lorenz oscillator are:
dx(t)
dt

= −ax + ay;
dy(t)
dt

= −xz + rx − y;

dz(t)
dt

= xy − bz;

when setting a = 10, r = 28 and b = 8/3, the dynamic trajectory
is illustrated in Fig. 7(a).

To facilitate comparisons with the support vector machine
using evolution strategy (ES-SVM) (Hou & Li, 2009), the kernel
Kalman filter (KKF) (Ralaivola & Alche-Buc, 2003), NN-based auto-
regressive model (NN-based AR) and Auto-Regressive Moving
Averagemodel (NN-based ARMA) (Dudul, 2005), the input–output
pair is described as (x(t − 1τ), y(t − 1τ), z(t − 1τ); x(t), y(t);
z(t)), where 1τ = 7. By respectively describing each input
and corresponding output neuron as three linguistic terms ‘Large’,
‘Medium’ and ‘Small’, the identified membership functions are
illustrated by Fig. 8. Furthermore, Fig. 7(b) shows the reasoning
results of the Lorenz attractor system.

On the basis of RMSE, Table 10 summarizes and compares the
structures and performances of our approach, SVM, ES-SVM, KKF,
NN-based AR andNN-based ARMA. The analysis of the results leads
to the first conclusion that, for the Lorenz attractor system, the
proposed approach provides better reasoning results than most
models listed in Table 10. Despite the fact that the RMSE of the
proposed approach is larger than that of the NN-based AR model,
our approach significantly reduces the training epoch and number
of parameters with acceptable reasoning accuracy.

A second observation relates to the improvement of efficiency.
Unlike other models in which the interrelationships among neu-
ron units are described by simple weights, the proposed approach
quantifies the interactions among neuron units using mutual sub-
sethood. As Eq. (8) shows, these interactions are determined by rel-
evant parameters (centers/widths) of the membership functions.
By avoiding tuning the weights that interconnect different neu-
rons, our approach significantly reduces the training epoch and
number of tunable parameters. From this perspective, the im-
provement on structure indicates that the proposed approach per-
forms better in architectural economy than other models.

5. Conclusion

In this paper, a novel four-layer fuzzy neural network is pro-
posed to automatically construct FCMs. By using the mutual
subsethood to define and quantify the causalities in FCMs, our ap-
proach distinctly upholds the basic definition of FCMs and makes
the inference process easier to understand. Additionally, the pro-
posed approach is able to automatically identify the membership
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Fig. 8. Identified membership functions for input neurons.
functions and the causalities underlying the concerned systems. In
this manner, our approach reduces the excessive dependence of
traditional FCMs on expert knowledge.

The performance of the proposed approach is demonstrated
by testing it on three benchmarking chaotic time series: Duff-
ing forced-oscillation system, Mackey–Glass dataset and Lorenz
attractor system. Simulation results show that the proposed ap-
proach performs better prediction accuracy and architectural
economy in most cases.
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