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Abstract—This letter presents a novel algorithm for reducing
the computational complexity of identifying a speaker within a
Gaussian mixture speaker model framework. For applications
in which the entire observation sequence is known, we illustrate
that rapid pruning of unlikely speaker model candidates can be
achieved by reordering the time-sequence of observation vectors
used to update the accumulated probability of each speaker
model. The overall approach is integrated into a beam-search
strategy and shown to reduce the time to identify a speaker
by a factor of 140 over the standard full-search method, and
by a factor of six over the standard beam-search method when
identifying speakers from the 138 speaker YOHO corpus.

I. INTRODUCTION

T HE ABILITY to recognize a speaker by voice has re-
cently received much attention in the literature. Ap-

plications of speaker identification and verification include
banking over the telephone, computer security, as well as
access to secure documents over the internet. In [1], the use of
Gaussian mixture models (GMM’s) for speaker identification
was shown to provide superior performance compared with
several existing techniques. For example, error rates as low
as 0.7% have been reported on the 138 speaker, 8 kHz
sampled YOHO corpus [2]. However, as the population size
and length of test material increases, the computational cost of
performing the identification can increase substantially. This
letter addresses the problem of reducing the computational
complexity of the speaker identification task by applying
beam-search pruning in tandem with a novel reordering of
the observation sequence.

II. SPEAKER IDENTIFICATION BASED

ON GAUSSIAN MIXTURE MODELS

In GMM-based speaker identification, speech is charac-
terized by frame-synchronous observation vectors,

. Typical frame rates are on the order 10
ms and -dimensional features are extracted from overlapping
analysis windows centered about each frame instant. During
identification, the system is presented with a sequence of
observations produced by one of modeled speakers.
The identity of the speaker producing is determined by
finding the speaker model which maximizes thea posteriori
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probability across the speaker set

(1)

Using Bayes Rule, (1) can be expressed as

(2)

Assuming each speaker model is equally likely and noting that
is the same for all models, the identification task can be

summarized as finding

(3)

where is assumed to be modeled by a mixture
of multivariate Gaussian distributions, ,
where , and represent the mixture weight, mean
vector, and covariance matrix representing theth distribu-
tion, respectively. In (3), the observations are assumed to
be statistically independent, therefore temporal information is
not encoded by the model. Furthermore, in order to avoid
numerical stability problems, (3) is computed using the log-
likelihood

(4)

In general, the observations are modeled using diagonal co-
variance matrices yielding

(5)

The complete evaluation of (5) can require significant com-
putational resources. This is especially true if the number of
modeled speakers or the duration of the test material is large.
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One common method for reducing the computational overhead
involves using a “nearest-neighbor” [3] approximation of the
likelihood in (5)

(6)

where

(7)

Note that the mixture dependent constant is completely
known prior to algorithm run-time and can be precomputed.
Other studies have considered applying a beam-search during
likelihood calculation. Here, the partial sum of (6) at time
can be used to update a pruning threshold

(8)

where denotes the current set of active (i.e., unpruned)
models at time and is a constant used to define the
user controlled beam-width. During processing, active speaker
models whose log-likelihood score falls below are elimi-
nated from the search.

III. A LGORITHM FORMULATION

Typical speech processing systems analyze speech by cal-
culating features from overlapping windowed sections of data
(on the order of 20 to 30 ms) during which the vocal
tract characteristics are assumed stationary. The process of
frame overlapping results in neighboring observations which
exhibit a high degree of correlation. In the context of speaker
identification, correlation among adjacent observations violates
the original statistical independence assumption and results in
reduced efficiency of the beam-search. This is due to the fact
that a limited amount of information is gained from obser-
vation versus since they sample similar locations in
the speaker’s acoustic space. Consequently, many observations
must be examined before models of unlikely speakers can be
pruned during processing.

Intuitively, one might consider approaching this problem us-
ing variable frame rates (e.g., sampling the speech observations
less often during periods of slow spectral change and more
often during periods of fast spectral change). We point out
that this approach would throw away data that might be useful
in the overall decision. Likewise, one could also consider a
method by which the observations are selected based on a
spectral distance criterion (e.g., sampling a new observation
when the spectral distance between the last sampled obser-
vation and the current observation exceeds some threshold).
Here, the savings in speed may be outweighed by the cost

of the spectral distance computation. In addition, information
may be lost just as in the case of the variable frame-rate
processing strategy.

The novel approach considered in this letter provides a
computationally inexpensive method for improving the infor-
mation gained from each observation. To achieve this goal,
we assume that the entire observation sequence is known and
consider reordering the temporal sequence of observations.
This is motivated by the fact that the order of the parameter
sequence does not affect the final decision given in (6). The
reordering process is based on maximizing theinterval dis-
tanceor time-interval between successive observations used to
update (6). The observation reordering proposed here has two
advantages. First, since the observation sequence is reordered,
there is no loss of data as in the case of variable frame-
rate processing. Second, virtually no computational overhead
is required to reorder the observation sequence based on the
proposed criterion. One can think of the maximally-distant
time interval sampling scheme as providing a mechanism by
which observations, drawn from differing phonemes, can be
used to rapidly sample the acoustic space of the voice under
test. The proposed algorithm is described as follows.

Step 1) Initialize . Form a subset of observations
containing observations selected from uniformly
spaced intervals across the vectors contained in

.
Step 2) Update the likelihood scores for all unpruned

speaker models using observations contained in
. During the update, set a pruning threshold

as described in (8). Eliminate all speaker models
whose accumulated log-probabilities fall below

.
Step 3) Update the total set of scored observations,

.
Step 4) Form a subset of observations by sam-

pling the observations nearest to the midpoints of
previously scored elements found in . For
example, if and are part of , then

would be placed in . Increase the pass
count: .

Step 5) Repeat Steps 2–4 until until only one speaker
model remains unpruned, or all observations have
been scored and pick highest probable speaker.

For clarity, a graphical illustration of the observation vector
reordering procedure is shown in Fig. 1 for an initial uniform
sampling of frames and a total observation count
of ( ). Here, observations
are first used to update the log-probability of each speaker
model. Next, the remaining speaker models are updated
using observations . Finally, the
remaining models are updated using observations

.

IV. A LGORITHM EVALUATION

A. Evaluation Corpus and Speech Features

GMM’s were estimated for each of the 138 speakers (106
male, 32 female) of the YOHO speech corpus [4]. To be con-
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Fig. 1. Example of observation ordering for (A) standard GMM scoring
algorithm in which observations are sequentially ordered based on arrival
time and (B) reordered observation sequence using proposed algorithm with
� = 4. In (C), speaker identification likelihood scores are estimated using each
sequential reordered observation block (with model pruning during likelihood
update).

sistent with previous studies, the training and testing conditions
described in [2] were used for algorithm evaluation. Here,
the training data for each speaker consisted of approximately
6 min of speech found in the enrollment section of the
data base. The evaluation data consisted of ten verification
sessions made up of four combination lock phrases (i.e., ten
tests per speaker each of approximately 15 s in duration).
During model training, the speech was preemphasized using
a first-order finite impulse response (FIR) filter of the form

. Silence was removed by discarding low-
energy frames using an energy based speech activity detection
algorithm. During model training, the speech was parameter-
ized every 10 ms from 20 ms overlapping windows. Each
frame was parameterized by a vector consisting of 19 mel-
frequency cepstral coefficients (MFCC) [5] and normalized
log-frame energy. In total, 64 Gaussian mixtures were used to
model each speaker.

B. Experimental Procedure

The computational speed of four different algorithm sce-
narios were compared. Evaluations included 1) full Gaussian
mixture density evaluation without beam-search; 2) approxi-
mated nearest-neighbor Gaussian mixture density evaluation
without beam-search; 3) nearest-neighbor approximation with
beam-search; 4) the proposed algorithm consisting of nearest-
neighbor approximation, beam-search, and observation re-
ordering. For case 4), the value ofused in the initial uniform
sampling was set to 10. For each scenario, the percent of test
tokens correctly identified versus time (measured in seconds
of the CPU clock) were noted. The CPU time measurement
was started from the beginning of the scoring procedure until
the identity of the speaker was determined. All simulations
were conducted using a Sun Ultra-II workstation. For cases

Fig. 2. Plot of speed improvement relative to full-search method versus
speaker identification accuracy for the (138 speaker) YOHO corpus. Plots are
shown for (A) beam-search with nearest neighbor Gaussian mixture density
evaluation and (B) beam-search with nearest neighbor Gaussian mixture
density evaluation and proposed observation reordering. In each case, the
beamwidth was progressively narrowed to reveal a tradeoff between speaker
identification accuracy and algorithm speed improvement.

3) and 4), the beam-search width was adjusted in order to
reveal a trade-off between speaker recognition accuracy and
computational cost.

C. Experimental Results

The speaker identification accuracy for the baseline system
was found to be 99.3%. We point out that this is the same
identification accuracy reported in [2]. For the case of complete
density evaluation without beam-search [i.e., case 1); full-
search], the algorithm required 21 465 s of CPU time on a
Sun Ultra-II machine to perform the entire 1380 test scenarios.
For case 2), which utilized the nearest-neighbor approximation
given in (6), the ID rate remained at 99.3% while improving
the speed by a factor of 1.67 (12 823 s of CPU time). Next,
we considered nearest-neighbor density evaluation with beam-
search. The width of the beam was adjusted in order to reveal
the trade-off in algorithm speed versus speaker recognition
accuracy. Results of this case 3) evaluation are shown in
Fig. 2(a) as a speed improvement factor relative to the full-
search versus percent of speakers correctly identified. Here, we
see that the speaker ID performance begins to rapidly decline
as the speed of the search is increased by more than a factor of
23 (933 s of CPU time) over the baseline full-search condition.
However, using the proposed observation reordering method of
case 4), we see in Fig. 2(b) that the speaker ID rate remains at
99.3% while delivering a speed improvement of a factor of 140
(153 s of CPU time) over the full-search condition. Beyond
a speed-up factor of 140, the speaker ID rate of the proposed
method gradually declines. The proposed method provides a
factor of six speed improvement (i.e., ) over
conventional sequential sampling with beam-search and comes
at virtually no additional resource requirements.
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V. CONCLUSION

In this letter, we have addressed the issue of reducing
the computational complexity of identifying a speaker based
on the Gaussian mixture speaker model framework. It was
illustrated that because observation vectors are computed
from overlapping analysis frames, the statistical independence
assumption used in Gaussian mixture models is violated. Due
to the high degree of correlation between adjacent obser-
vation vectors, many observations must be used to update
the log-likelihood of each speaker model before unlikely
candidates can be pruned using a beam-search mechanism.
As a consequence, we have considered an operation that
reorders the time-sequence of observation vectors in order
to rapidly sample the acoustic space of the voice under test.
The information content gained from each observation taken
in this manner is significantly greater than that obtained by
the traditional sequential log-likelihood update. As a result,
unlikely speaker models are rapidly pruned from the search
space, greatly reducing the computational complexity of the

speaker identification algorithm. The proposed observation
reordering was shown to decrease the search time by an
additional factor of six over conventional sequential sampling
with beam-search. The proposed method is easy to implement,
can readily be integrated into existing GMM-based systems,
and requires no additional overhead.
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